Riccati方程(微分方程)
形如:$$\frac{dy}{dx}=P(x)y^{2}+Q(x)y+R(x)$$
其中P(x)、Q(x)、R(x)是连续可微函数
或形如
$$\frac{dy}{dx}=ay^{2}+\frac{k}{x}y+\frac{c}{x^{m}}$$
其中a、k、c、m为常数
一般情况下,Riccati方程不能用初等积分方法求出它的通解,如果知道它的一个特解,就可以用初等积分方法求出通解
设Riccati方程一个特解$y^{*}=y_{1}$
令$$y=z+y_{1}$$
则Riccati方程转化为
$$\frac{dz}{dx}=[2P(x)y_{1}+Q(x)]z+P(x)z^{2}$$
这是一个伯努利方程,可求出通解,再代入$y=z+y_{1}$即可
特解形式
如果一阶微分方程形式如: $$\frac{dy}{dx}=\frac{f^{'}(x)}{g(x)}-\frac{g^{'}(x)}{f(x)}$$
特解为$y=-\frac{g^{'}(x)}{f(x)}$
例1$$x^{2}y^{'}=x^{2}y^{2}+xy+1$$
解:$$\frac{dy}{dx}=y^{2}+\frac{y}{x}+\frac{1}{x^{2}}$$
由上述特解形式知:$y_{1}=-\frac{1}{x}$是它一个特解
令$y=z-\frac{1}{x}$
代入原方程得到$$\frac{dz}{dx}=z-\frac{z}{x}$$
有解z=0,当$z≠0$时,
令$$u=z^{-1}$$
方程转化为$$\frac{du}{dx}=\frac{u}{x}-1$$
解得通解为$$u=x(c-ln|x|)$$
所以原方程通解为:
$$y=-\frac{1}{x},y=-\frac{1}{x}+x(c-ln|x|)$$
Riccati方程(微分方程)的更多相关文章
- Riccati方程迭代法求解
根据上述迭代法求解P,P为Riccati方程的解,然而用LQR需要计算K,再将K算出. (迭代过程中 ,我们可以将此算法和dlqr函数求解的参数进行对比,当误差小于我们设置的允许误差我们就可以把此算法 ...
- 【cs229-Lecture18】线性二次型调节控制
本节内容: 控制MDP的算法: 状态行动奖励: 非线性动力学系统: 模型: LQR:线性二次型调节控制:(Riccati方程)
- Matlab基础
基本运算: 一,矩阵的生成 clc ; clear all; close all; 1.直接输入 A = [ 1 ,2 ,3,4;2,3,4,5;3,4,5,6] A = 1 2 3 4 2 3 4 ...
- Matlab编程-矩阵函数
(1) are函数 功能:求解Riccati方程的解 Riccati方程的一般形式:A^TX+XA-XBX+C=0 (2)blkdiag函数 函数功能:a=blkdiag(a1,a2,a3,…)表示生 ...
- MATLAB命令大全和矩阵操作大全
转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵 ...
- MATLAB矩阵操作大全
转载自:http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示 在MATLAB中创建矩阵 ...
- LQR要点
新的“A”变成着了这样:Ac = A - KB 基于对象:状态空间形式的系统 能量函数J:也称之为目标函数 Q:半正定矩阵,对角阵(允许对角元素出现0) R:正定矩阵,QR其实就是权重 下面这段话可能 ...
- LQR (线性二次型调节器)的直观推导及简单应用
转自:https://blog.csdn.net/heyijia0327/article/details/39270597 本文主要介绍LQR的直观推导,说明LQR目标函数J选择的直观含义以及简单介绍 ...
- 线性二次型控制器(LQR)——轨迹跟踪器
1 概念 2 线性时变系统的跟踪问题 3 线性定常系统的跟踪问题 公式18--22为求解的关键 根据20.21分别求出P.g的值则通过18可求得期望的输出u 4 实例分析 5 仿真实验 先将上 ...
随机推荐
- 使用dom4j 解析xml文件
//使用dom4j 解析xml文件,升级版,dom4j是对dom的封装 //重点 package com.offcn.utils; import java.io.File; import java.i ...
- python将字符串类型list转换成list
python读取了一个list是字符串形式的'[11.23,23.34]',想转换成list类型: 方式一: import ast str_list = "[11.23,23.34]&quo ...
- 深度链接(DeepLinking)怎样免费实现
深度链接技术(DeepLinking),一般是通过Web页面调用原生App,并把需要的参数通过Uri的形式传递给App,主要使用方式有:两个App之间的广告.App的社交分享.页面跳转App.DSP广 ...
- Linux用户和权限管理看了你就会用啦
前言 只有光头才能变强 回顾前面: 看完这篇Linux基本的操作就会了 没想到上一篇能在知乎获得千赞呀,Linux也快期末考试了,也有半个月没有写文章了.这篇主要将Linux下的用户和权限知识点再整理 ...
- Spring Boot 2.x基础教程:快速入门
简介 在您第1次接触和学习Spring框架的时候,是否因为其繁杂的配置而退却了?在你第n次使用Spring框架的时候,是否觉得一堆反复黏贴的配置有一些厌烦?那么您就不妨来试试使用Spring Boot ...
- 关于时间的那些事--PHP、JavaScript、MySQL操作时间
PHP篇 PHP中时间操作单位是秒 一.将时间戳转为普通日期格式 //当前时间戳 time(); //当前时间格式 date("Y-m-d H:i:s",time()); //昨天 ...
- 责任链模式 职责链模式 Chain of Responsibility Pattern 行为型 设计模式(十七)
责任链模式(Chain of Responsibility Pattern) 职责链模式 意图 使多个对象都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系 将这些对象连接成一条链,并沿着这 ...
- 自己实现的TypeOf函数2
自己实现的typeOf函数:返回传入参数的类型 主要用于解决,js自带的typeof返回结果不精确:Ext JS中typeOf对字符串对象.元素节点.文本节点.空白文本节点判断并不准确的问题 与上一篇 ...
- 解决vue数据渲染过程中的闪动问题
关键代码 主要解决vue双大括号{{}}在数据渲染和加载过程中的闪动问题,而影响客服体验. html代码: <span class="tableTitle selftab" ...
- HashTable、ConcurrentHashMap、TreeMap、HashMap关于键值的区别
集合类 key value super 说明 HashTable 不能为null 不能为null Dictionary 线程安全 ConcurrentHashMap 不能为null 不能为null A ...