Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 33888   Accepted: 11544

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628
/*
poj 1113 凸包周长 给你一些点组成的城堡,要求用最少的墙围起来,且墙距离城堡有一定距离
当城堡有转角时,毫无疑问墙建成圆弧的最合适
假设一个转角内角为x,那么圆弧的角度就是180-x度
所以最终形成圆弧角度就是 n*180 - 多边形内角和 = 360
对于凹陷下去的地方而言, 很明显直线更短. 所以求个凸包
ans=凸包周长+圆周长 hhh-2016-05-06 21:51:48
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1) using namespace std;
const int maxn = 40010;
double PI = 3.1415926;
double eps = 1e-8;
int n,m; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point lis[maxn];
int Stack[maxn],top; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} bool cmp(Point a,Point b)
{
double t = (a-lis[0])^(b-lis[0]);
if(sgn(t) == 0)
{
return dist(a,lis[0]) <= dist(b,lis[0]);
}
if(sgn(t) < 0)
return false;
else
return true;
} void Graham(int n)
{
Point p;
int k = 0;
p = lis[0];
for(int i = 1; i < n; i++)
{
if(p.y > lis[i].y || (p.y == lis[i].y && p.x > lis[i].x))
p = lis[i],k = i;
}
swap(lis[0],lis[k]); sort(lis+1,lis+n,cmp);
if(n == 1)
{
top = 1;
Stack[0] = 0;
return ;
}
if(n == 2)
{
top = 2,Stack[0] = 0,Stack[1] = 1;
return ;
}
Stack[0] = 0;
Stack[1] = 1;
top = 2;
for(int i = 2; i < n; i++)
{
while(top > 1 && sgn((lis[Stack[top-1]]-lis[Stack[top-2]])
^ (lis[i]-lis[Stack[top-2]])) <= 0)
top --;
Stack[top++] = i;
}
} int main()
{
//freopen("in.txt","r",stdin);
int n;
double len;
while(scanf("%d%lf",&n,&len) != EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&lis[i].x,&lis[i].y);
}
Graham(n);
double ans = 0;
//cout << top <<endl;
for(int i = 0; i < top; i++)
{
if(i == top-1)
ans += dist(lis[Stack[i]],lis[Stack[0]]);
else
ans += dist(lis[Stack[i]],lis[Stack[i+1]]);
}
ans += 2*PI*len;
printf("%.0f\n",ans);
}
return 0;
}

  

poj 1113 凸包周长的更多相关文章

  1. POJ 1113 凸包模板题

    上模板. #include <cstdio> #include <cstring> #include <iostream> #include <algorit ...

  2. poj 1113 凸包

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  3. POJ 1113 Wall【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  5. POJ 1113 Wall(Graham求凸包周长)

    题目链接 题意 : 求凸包周长+一个完整的圆周长. 因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆. 思路 : 求出凸包来,然后加上圆的周长 #include <stdi ...

  6. 计算几何--求凸包模板--Graham算法--poj 1113

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28157   Accepted: 9401 Description ...

  7. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  8. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  9. POJ 2187 Beauty Contest【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

随机推荐

  1. iOS开发-添加圆角效果高效实现

    圆角(RounderCorner)是一种很常见的视图效果,相比于直角,它更加柔和优美,易于接受.但很多人并不清楚如何设置圆角的正确方式和原理.设置圆角会带来一定的性能损耗,如何提高性能是另一个需要重点 ...

  2. ios中录音功能的实现AudioSession的使用

    这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...

  3. RxSwift:ReactiveX for Swift 翻译

    RxSwift:ReactiveX for Swift 翻译 字数1787 阅读269 评论3 喜欢3 图片发自简书App RxSwift | |-LICENSE.md |-README.md |-R ...

  4. 【iOS】字号问题

    一,ps和pt转换 px:相对长度单位.像素(Pixel).(PS字体) pt:绝对长度单位.点(Point).(iOS字体) 公式如下: pt=(px/96)*72. 二,字体间转换 1in = 2 ...

  5. python解释NTFS runlist的代码(文章转自北亚数据恢复张宇工程师)

    代码如下: 执行效果如下:root@zhangyu-VirtualBox:~/NTFS-5# python3 read_runlist.py mft_source.img ***参数数量或格式错误! ...

  6. lua保存table到文件并从文件解析成table

    require("json") result = { ["ip"]="192.168.0.177", ["date"]= ...

  7. JavaScript 实现二叉树

    JavaScript 实现二叉树: // JavaScript 实现二叉树 function BinaryTree () { var Node = function (key) { this.key ...

  8. python-map的用法

    map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 1.当seq只 ...

  9. Angular UI框架 Ng-alain @delon的脚手架的生成开发模板

    前言 首先感谢下 cipchk基于 Ng-Zorror 框架上制作的ng-alain . 之前很早就关注了 ng-alain,今天得空折腾了下. 折腾的时候发现官方文档有些坑,没有写清楚,所以我作为一 ...

  10. Web 项目报错No suitable driver found for jdbc:mysql://localhost:3306/book 的一个解决办法

    确认jar包加入到了build path中,然后注意版本是否与数据库相配,还要留意将jar包放入WEB-INF下的lib文件夹中