Description

A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。

Input

第一行包含两个正整数n,d(1<=n<=500000,1<=d<=10)。
第二行包含n个正整数a[1],a[2],...,a[n](1<=a[i]<=1000000)。
本题中m不直接给出,但是保证m<=10000000。

Output

输出一行一个整数,即方案数对10^9+7取模的结果。

Sample Input

5 2
1 3 4 1 2

Sample Output

2
$f[i][j][k]$表示前i个石堆j为取走的石子堆%d值,k为取走石子的异或值
$f[i][j][k]=f[i-1][j-1][k~xor~a[i]]+f[i-1][j][k]$
复杂度$O(n*maxa*d)$
但可以发现$a[i]$和小于$a[i]$的数异或和不会超过$2*a[i]$
所以按$a$排序,限制$k$的枚举上界
此题卡空间
先把第一维去掉,然后一个一个试数组开多大,因为开到$10*2000000$肯定会超
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int Mod=1e9+;
int f[][],g[],n,d,a[],lim,s;
int main()
{int i,j,k;
scanf("%d%d",&n,&d);
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
s^=a[i];
}
sort(a+,a+n+);
f[][]=;
for (i=;i<=n;i++)
{
lim=;
while (lim<=a[i]) lim*=;
for (j=;j<lim;j++)
{
g[j]=f[][j]+f[d-][j^a[i]];
if (g[j]>=Mod) g[j]-=Mod;
}
for (j=d-;j;j--)
{
for (k=;k<lim;k++)
{
f[j][k]=f[j-][k^a[i]]+f[j][k];
if (f[j][k]>=Mod) f[j][k]-=Mod;
}
}
for (j=;j<lim;j++)
{
f[][j]=g[j];
}
}
if (n%d==) f[][s]--;
if (f[][s]<) f[][s]+=Mod;
printf("%d\n",f[][s]);
}

[POI2016]Nim z utrudnieniem的更多相关文章

  1. bzoj 4347 [POI2016]Nim z utrudnieniem DP

    4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Su ...

  2. BZOJ4347 : [POI2016]Nim z utrudnieniem

    将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...

  3. 【bzoj4347】[POI2016]Nim z utrudnieniem dp

    题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...

  4. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  5. BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)

    由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 【Python】使用torrentParser1.03对多文件torrent的分析结果

    Your environment has been set up for using Node.js 8.5.0 (x64) and npm. C:\Users\horn1>cd C:\User ...

  8. Nim语言的模块化编程

    前言 Nim支持把一大段程序分成若干个模块 一个模块就是一个源代码文件 每个模块都拥有它自己的名称空间 模块化可以起到封装(信息隐藏)和分步编译的作用 一个模块可以通过import语句获得另一个模块的 ...

  9. Nim教程【十二】

    排除指定符号 一般情况下使用import语句,会把一个模块内的符号都导入进来 如果你像排除特定的符号(不想让某些符号被导入进来) 可以使用except子句 就像下面这样 import mymodule ...

随机推荐

  1. 进程与fork()、wait()、exec函数组

    进程与fork().wait().exec函数组 内容简介:本文将引入进程的基本概念:着重学习exec函数组.fork().wait()的用法:最后,我们将基于以上知识编写Linux shell作为练 ...

  2. DNS协议(一)

    在互联网上要想与另外一台主机通信,要知道对方的IP地址,但是IP地址是很难记忆的, 比如百度的一台服务器的IP地址为115.239.210.27,我们在浏览器中输入http://115.239.210 ...

  3. Beta冲刺 第二天

    Beta冲刺 第二天 1. 昨天的困难 由于前面的冲刺留下的问题很多,而且混乱的代码给我们接下来的完善工作带来了巨大的困难. 2. 今天解决的进度 潘伟靖: 1.对代码进行了review 2.为系统增 ...

  4. 弹幕视频播放app案例分析

    产品 哔哩哔哩动画 相对于其他视频播放软件来说,哔哩哔哩动画没有广告影响观看体验,而且内容更偏重于二次元,因此我更倾向于使用它. 第一部分 调研, 评测 #第一次上手体验 用起来还是比较方便,可以快速 ...

  5. python 二叉堆

    BinaryHeap() 创建一个新的,空的二叉堆. insert(k) 向堆添加一个新项. findMin() 返回具有最小键值的项,并将项留在堆中. delMin() 返回具有最小键值的项,从堆中 ...

  6. 利用yield 实现Xrange功能

    def xrange(n): start = 0 while True: if start>n: return yield start start+=1 obj = xrange(5) n1 = ...

  7. JSONP 详解

    1.什么是JSONP ? JSONP(JSON with Padding)是一个非官方的协议,它允许在服务器端集成Script tags返回至客户端,通过javascript callback的形式实 ...

  8. HTTP请求到爬虫代码的终南捷径

    前阵子在做爬虫的时候学会了各种抓包,看到http请求的时候硬拼代码实在有点累. 后来发现Postman工具是直接可以把Postman请求直接生成对应的代码,这样一下来就美滋滋了. 那么最后的问题就成了 ...

  9. Mego开发文档 - 快速开始

    Mego 快速开始 我们将创建一个简单的数据新增及查询来演示 Mego 的使用过程.演示中都是使用 Visual Studio 2017 作为开发工具,SQL Server 2012 作为数据库. 创 ...

  10. SpringCloud的Config:ConfigServer注册到EurekaServer中,变成一个Eureka服务

    一.概念与定义 1.将SpringCloud ConfigServer注册到 EurekaServer,以便ConfigClient以服务的方式引用ConfigServer 2.客户端不再引用 Con ...