Description

A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。

Input

第一行包含两个正整数n,d(1<=n<=500000,1<=d<=10)。
第二行包含n个正整数a[1],a[2],...,a[n](1<=a[i]<=1000000)。
本题中m不直接给出,但是保证m<=10000000。

Output

输出一行一个整数,即方案数对10^9+7取模的结果。

Sample Input

5 2
1 3 4 1 2

Sample Output

2
$f[i][j][k]$表示前i个石堆j为取走的石子堆%d值,k为取走石子的异或值
$f[i][j][k]=f[i-1][j-1][k~xor~a[i]]+f[i-1][j][k]$
复杂度$O(n*maxa*d)$
但可以发现$a[i]$和小于$a[i]$的数异或和不会超过$2*a[i]$
所以按$a$排序,限制$k$的枚举上界
此题卡空间
先把第一维去掉,然后一个一个试数组开多大,因为开到$10*2000000$肯定会超
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int Mod=1e9+;
int f[][],g[],n,d,a[],lim,s;
int main()
{int i,j,k;
scanf("%d%d",&n,&d);
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
s^=a[i];
}
sort(a+,a+n+);
f[][]=;
for (i=;i<=n;i++)
{
lim=;
while (lim<=a[i]) lim*=;
for (j=;j<lim;j++)
{
g[j]=f[][j]+f[d-][j^a[i]];
if (g[j]>=Mod) g[j]-=Mod;
}
for (j=d-;j;j--)
{
for (k=;k<lim;k++)
{
f[j][k]=f[j-][k^a[i]]+f[j][k];
if (f[j][k]>=Mod) f[j][k]-=Mod;
}
}
for (j=;j<lim;j++)
{
f[][j]=g[j];
}
}
if (n%d==) f[][s]--;
if (f[][s]<) f[][s]+=Mod;
printf("%d\n",f[][s]);
}

[POI2016]Nim z utrudnieniem的更多相关文章

  1. bzoj 4347 [POI2016]Nim z utrudnieniem DP

    4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Su ...

  2. BZOJ4347 : [POI2016]Nim z utrudnieniem

    将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...

  3. 【bzoj4347】[POI2016]Nim z utrudnieniem dp

    题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...

  4. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  5. BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)

    由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 【Python】使用torrentParser1.03对多文件torrent的分析结果

    Your environment has been set up for using Node.js 8.5.0 (x64) and npm. C:\Users\horn1>cd C:\User ...

  8. Nim语言的模块化编程

    前言 Nim支持把一大段程序分成若干个模块 一个模块就是一个源代码文件 每个模块都拥有它自己的名称空间 模块化可以起到封装(信息隐藏)和分步编译的作用 一个模块可以通过import语句获得另一个模块的 ...

  9. Nim教程【十二】

    排除指定符号 一般情况下使用import语句,会把一个模块内的符号都导入进来 如果你像排除特定的符号(不想让某些符号被导入进来) 可以使用except子句 就像下面这样 import mymodule ...

随机推荐

  1. 配置tomcat8数据源(采用局部数据源方式)

    tomcat提供两种数据源配置方式,全局和局部.全局的话对于所有web应用都生效,局部只对于配置的某一个web生效. 步骤: 1.将mysql的jdbc驱动复制到tomcat的lib路径下. 2.在t ...

  2. 20162311 实验二 Java面向对象程序设计 实验报告

    实验二 Java面向对象程序设计 实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原则 5. 了解设计 ...

  3. L2 约束的最小二乘学习法

    \[ \begin{align*} &J_{LS}{(\theta)} = \frac { 1 }{ 2 } { \left\| \Phi \theta - y \right\| }^{ 2 ...

  4. jsp文件调用本地文件的方法(Tomcat server.xml 设置虚拟目录)

    JSP文件: <video id="my-video" class="video-js" controls preload="auto" ...

  5. PHP trait

    ps:由于PHP是单继承的,无法继承多个类所以可以用triat(关键字,特性)来命名达到子类继承多个父类的效果:暂且理解为类吧.class = trait <?php trait A { pub ...

  6. python全栈开发-json和pickle模块(数据的序列化)

    一.什么是序列化? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flat ...

  7. 改变this不要怕!!!

    在之前的学习和工作中,会不必要的涉及到 改变this的指向问题: 脑子里会想到的是 apply, call, bind 这三个 可逆知道他的区别吗? 1. bind区别于 apply和call 是因为 ...

  8. 敏捷项目需求拆解&发现用户故事

    需求文档和敏捷中的Epic,User Story, Task之间是什么关系以及如何将需求文档转换成敏捷方式的描述,指导开发人员. 一直是很多公司团队比较困扰的问题,那么最近笔者为了解决这些问题,上了一 ...

  9. bootstrap 之下拉多选

    效果如图: 一.HTML代码 <label class="col-sm-1 control-label text-right" for="ds_host" ...

  10. CTF中常见密码题解密网站总结

    0x00.综合 网站中包含大多编码的解码. http://web2hack.org/xssee/ https://www.sojson.com/ http://web.chacuo.net/ 0x01 ...