Description

A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取。谁先不能操作,谁就输了。在游戏开始前,B可以扔掉若干堆石子,但是必须保证扔掉的堆数是d的倍数,且不能扔掉所有石子。A先手,请问B有多少种扔的方式,使得B能够获胜。

Input

第一行包含两个正整数n,d(1<=n<=500000,1<=d<=10)。
第二行包含n个正整数a[1],a[2],...,a[n](1<=a[i]<=1000000)。
本题中m不直接给出,但是保证m<=10000000。

Output

输出一行一个整数,即方案数对10^9+7取模的结果。

Sample Input

5 2
1 3 4 1 2

Sample Output

2
$f[i][j][k]$表示前i个石堆j为取走的石子堆%d值,k为取走石子的异或值
$f[i][j][k]=f[i-1][j-1][k~xor~a[i]]+f[i-1][j][k]$
复杂度$O(n*maxa*d)$
但可以发现$a[i]$和小于$a[i]$的数异或和不会超过$2*a[i]$
所以按$a$排序,限制$k$的枚举上界
此题卡空间
先把第一维去掉,然后一个一个试数组开多大,因为开到$10*2000000$肯定会超
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int Mod=1e9+;
int f[][],g[],n,d,a[],lim,s;
int main()
{int i,j,k;
scanf("%d%d",&n,&d);
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
s^=a[i];
}
sort(a+,a+n+);
f[][]=;
for (i=;i<=n;i++)
{
lim=;
while (lim<=a[i]) lim*=;
for (j=;j<lim;j++)
{
g[j]=f[][j]+f[d-][j^a[i]];
if (g[j]>=Mod) g[j]-=Mod;
}
for (j=d-;j;j--)
{
for (k=;k<lim;k++)
{
f[j][k]=f[j-][k^a[i]]+f[j][k];
if (f[j][k]>=Mod) f[j][k]-=Mod;
}
}
for (j=;j<lim;j++)
{
f[][j]=g[j];
}
}
if (n%d==) f[][s]--;
if (f[][s]<) f[][s]+=Mod;
printf("%d\n",f[][s]);
}

[POI2016]Nim z utrudnieniem的更多相关文章

  1. bzoj 4347 [POI2016]Nim z utrudnieniem DP

    4347: [POI2016]Nim z utrudnieniem Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 733  Solved: 281[Su ...

  2. BZOJ4347 : [POI2016]Nim z utrudnieniem

    将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...

  3. 【bzoj4347】[POI2016]Nim z utrudnieniem dp

    题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...

  4. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  5. BZOJ4347 POI2016Nim z utrudnieniem(博弈+动态规划)

    由nim游戏的结论,显然等价于去掉一些数使剩下的数异或和为0. 暴力的dp比较显然,设f[i][j][k]为前i堆移走j堆(模意义下)后异或和为k的方案数.注意到总石子数量不超过1e7,按ai从小到大 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 【Python】使用torrentParser1.03对多文件torrent的分析结果

    Your environment has been set up for using Node.js 8.5.0 (x64) and npm. C:\Users\horn1>cd C:\User ...

  8. Nim语言的模块化编程

    前言 Nim支持把一大段程序分成若干个模块 一个模块就是一个源代码文件 每个模块都拥有它自己的名称空间 模块化可以起到封装(信息隐藏)和分步编译的作用 一个模块可以通过import语句获得另一个模块的 ...

  9. Nim教程【十二】

    排除指定符号 一般情况下使用import语句,会把一个模块内的符号都导入进来 如果你像排除特定的符号(不想让某些符号被导入进来) 可以使用except子句 就像下面这样 import mymodule ...

随机推荐

  1. 网络1711c语言第0次作业总结

    作业地址:https://edu.cnblogs.com/campus/jmu/JMUC--NE17111712/homework/861 总结 1.评分标准 以下要求中除了未交和抄袭0分,其他项最多 ...

  2. 掌握SQLServer锁的相关概念

    一.为什么要引入锁 当多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: ◆丢失更新 A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 ◆脏读 ...

  3. 201621123040《Java程序设计》第十一周学习总结

    1.本周学习总结 1.1以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2.书面作业 2.1源代码阅读:多线程程序BounceThread 2.1.1BallRunnable类有什么用?为什 ...

  4. Welcome to Django!

    Welcome to Django! 实验简介 Django是一个可以使Web开发工作更加高效愉快的Web开发框架.Django可以让你用最小的代价构建和维护更高质量的Web应用程序. 从好的方面来看 ...

  5. margin-top导致父标签偏移问题

    从一个大神博客中看到这句话: 这个问题发生的原因是根据规范,一个盒子如果没有上补白(padding-top)和上边框(border-top),那么这个盒子的上边距会和其内部文档流中的第一个子元素的上边 ...

  6. ctf变量覆盖漏洞:

    1.变量覆盖: ①:针对extract函数的变量覆盖漏洞: <?php @error_reporting(E_ALL^E_NOTICE); require('config.php'); if($ ...

  7. javascript 中的类型

    javascript 中的类型 js 是一门弱语言,各式各样的错误多种多样,特别是确定返回值有问题的时候,你会用什么来进行表示错误? 我一般有三个选择: null '' error {} 第一个选择 ...

  8. BizTalk 2016 配置 RosettaNet遇到的坑

    本文只针对已经安装好BizTalk 2016 需要在安装RosettaNet加速器的伙伴. IIS配置 权限问题 错误信息 Failed to get IIS metabase property. E ...

  9. MyEclipse的多模块Maven web(ssm框架整合)

    Maven的多模块可以让项目结构更明确,提高功能的内聚,降低项目的耦合度,真正的体现出分层这一概念. 我们在操作中,要明白为什么这样做,要了解到更深的层次,这样,我们就不限于个别软件了. 话不多说,直 ...

  10. CRC 校验

    匠心零度 转载请注明原创出处,谢谢! 说明 上篇RocketMQ(二):RPC通讯介绍了rocketmq的一些rpc细节,其实这些内容不仅仅是rocketmq内容,任何通信模块基本都是类似的,这块内容 ...