计蒜客NOIP2017提高组模拟赛(五)day1-展览
传送门
发现这题选或不选对状态的优劣程度不会产生影响,如果已经确定了两个数a和b,那么最优的首项和公比也都是唯一确定的,
与对于后面的数x,加进去也好不加进去也好,首项和公比依旧是原来的
于是我们用尺取算法,用两个指针来扫一遍,
如果只有一个数且下一个数能被整除,就加进去,然后确定首项和公比
如果只有一个数且下一个数不能整除,两个指针直接指向下一个数
如果有多个数且下一个数满足公式,就加进来
如果有多个数且下一个数不满足公式,两个指针直接指向下一个数
这样对于最优解,一定是可以找到的
顺便说下最优的公比和首项的确定:
已知两个数x y,求满足它们的最优的首项 公比
设x=a*q^k1 y=a*q^k2 且x>y
那么x/y得到q^(k1-k2),
由于最优的公比一定尽可能小,所以要使指数尽可能大,就把q质因数分解,指数取gcd提出
这样就得到了公比,拿这个公比不断地除以一开始的x,就得到了首项
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#define INF 0x7f7f7f7f
#define pii pair<int,int>
#define ll long long
#define MAXN 100005
using namespace std; ll read(){
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if('-'==ch)f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
set<ll> s;
ll a[MAXN];
int gcd(int x,int y){
return (y==?x:gcd(y,x%y));
}
ll Pow(ll x,ll y){
ll ret=;
while(y){
if(y&){
ret*=x;
}
x*=x;
y>>=;
}
return ret;
}
int gt(ll x,ll y,ll &b,ll &q){
ll t=x/y;
if(==t){
b=x,q=;
return ;
}
vector<pii> vs;
for(int i=;i<=;i++){
if(t%i==){
int cnt=;
while(t%i==){
cnt++;
t/=i;
}
vs.push_back(make_pair(i,cnt));
}
}
if(t>){
return -;
}
int g=vs[].second;
for(int i=;i<vs.size();i++){
g=gcd(g,vs[i].second);
}
q=;
for(int i=;i<vs.size();i++){
q*=Pow((ll)vs[i].first,(ll)vs[i].second/g);
}
b=y;
while(b%q==){
b/=q;
}
return ;
}
int check(ll x,ll b,ll q){
if(x%b){
return ;
}
if(q==){
return (x==b);
}
if(s.count(x)){
return ;
}
x/=b;
ll t=q;
int L=,R=log(1.0*x)/log(1.0*q)+;
while(R-L>){
int mid=(L+R)/;
ll t=Pow(q,(L+R)/);
if(t>=x){
R=mid;
}
else{
L=mid;
}
}
if(Pow(q,L)==x||Pow(q,R)==x){
return ;
}
return ;
}
int main()
{
// freopen("seq2.in","r",stdin);
// freopen("seq.out","w",stdout);
n=read();
for(int i=;i<=n;i++){
a[i]=read();
}
int L=,R=;
int ans=;
ll b=,q=;
s.insert(a[]);
for(int i=;i<=n;i++){
ll t1=a[R],t2=a[i];
if(t1<t2){
swap(t1,t2);
}
if(t1%t2!=){
s.clear();
s.insert(a[i]);
L=i,R=i;
continue;
}
if(L==R){
R++;
s.insert(a[R]);
if(-==gt(t1,t2,b,q)){
L++;
s.clear();
s.insert(a[L]);
}
}
else if(check(a[i],b,q)){
R++;
if(q!=)
s.insert(a[R]);
}
else{
s.clear();
s.insert(a[i]);
L=i,R=i;
}
ans=max(ans,R-L+);
}
printf("%d\n",ans);
return ;
}
计蒜客NOIP2017提高组模拟赛(五)day1-展览的更多相关文章
- 计蒜客NOIP2017提高组模拟赛(三)day1
火山喷发 火山喷发对所有附近的生物具有毁灭性的影响.在本题中,我们希望用数值来模拟这一过程. 在环境里有 n 个生物分别具有 A1,A2,⋯,An点生命值,一次火山喷发总计 MM 轮 ...
- 计蒜客NOIP2017提高组模拟赛(四)day1
T1:小X的质数 小 X 是一位热爱数学的男孩子,在茫茫的数字中,他对质数更有一种独特的情感.小 X 认为,质数是一切自然数起源的地方. 在小 X 的认知里,质数是除了本身和 1 以外,没有其他因数的 ...
- 计蒜客NOIP2017提高组模拟赛(五)day1-机智的 AmyZhi
传送门 很水的题目啦QAQ #include<cstdio> #include<cstdlib> #include<algorithm> #include<c ...
- 计蒜客NOIP2017提高组模拟赛(五)day2-蚂蚁搬家
传送门 这题可以用线段树来维护 #include<cstdio> #include<cstdlib> #include<algorithm> #include< ...
- 计蒜客NOIP2017提高组模拟赛(五)day2-成绩统计
传送门 用hash,因为map的复杂度可能在这题中因为多一个log卡掉,但是hash不会 可能因为这个生成的随机数有循环的情况,不是完全均匀的 而且这题hash表的长度也可以开的很大 #include ...
- 计蒜客NOIP2017提高组模拟赛(三)day2-数三角形
传送门 这题有点坑啊 设A为两边颜色不同的角,B为两边颜色相同的角 那么考虑三种三角形:异色,同色,其他 对于任何一个异色三角形,一定会有三个颜色不同的角, 对于任何一个同色三角形,一定会有零个颜色不 ...
- 计蒜客NOIP2017提高组模拟赛(三)day2-直线的交点
传送门 简单几何+逆序对 发现当两条直线甲乙与平板的交点在上面甲在较左的位置,那么下面甲在较右的位置就可以相交 然后把上面的位置排下序,下面离散化+树状数组即可 #include<cstdio& ...
- 计蒜客NOIP2017提高组模拟赛(三)day2-小区划分
传送门 dp,注意边界 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cst ...
- 计蒜客 NOIP 提高组模拟竞赛第一试 补记
计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...
随机推荐
- 【iOS】swift init构造器
这几天在使用 Swift 重写原来的一个运动社交应用 SportJoin. 为什么要重写呢? 首先因为实在找不到设计师给我作图; 其次, 我也闲不下来, 想找一些项目做, 所以只好将原来的代码重写了. ...
- 再议Python协程——从yield到asyncio
协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...
- 【原创】Webpack构建中hash的优化
背景: SPA的vue应用,采用webpack2构建,打包入口为main.js 输出:main模块打包成app.js,公共lib打包成vendor.js,公共样式打包成app.css,运行时依赖打包成 ...
- SQLite 带你入门
SQLite数据库相较于我们常用的Mysql,Oracle而言,实在是轻量得不行(最低只占几百K的内存).平时开发或生产环境中使用各种类型的数据库,可能都需要先安装数据库服务(server),然后才能 ...
- EasyUI中Tabs添加远程数据的方法。
tabs加载远程数据: $(function () { $("#btnquery").click(function () { if (!$("#tcontent" ...
- 解决yii2中 Class yii/web/JsonParser does not exist, ReflectionException问题
最近在调试RESTful API示例时,出现以下错误: { "name": "Exception", "message": "Cl ...
- redis 持久化之 RDB
redis的运维过程中,我们对数据持久化做一个基本的总结. 1什么是持久化: redis 所有数据保持在内存中,对数据的更新将异步地保存到磁盘上. RDB 文件创建的过程是直接从内存 写入到我们我磁盘 ...
- VMware虚拟机安装
学习Linux系统最好的方式就是在自己的虚拟机上安装Linux:接下来就给大家简单介绍一下VMware虚拟机的安装以及Linux的安装:VMware虚拟机只是为了更好的学习Linux: ...
- svn介绍和安装
什么是SVN呢,作用是什么: SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS/CVS,它采取了分支管理系统,它的设计目标就是取代CVS.SVN就是用于多个人共同开 ...
- 前端插件之Bootstrap Switch 选择框开关控制
简介 Bootstrap Switch是一款轻量级插件,可以给选择框设置类似于开关的样式 它是依赖于Bootstrap的一款插件 下载 下载地址 在线引用 导入 因为它是依赖于Bootstrap的一款 ...