2811: [Apio2012]Guard

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 905  Solved: 387
[Submit][Status][Discuss]

Description


Input


Output


Sample Input

5 3 4
1 2 1
3 4 1
4 4 0
4 5 1

Sample Output

3
5

HINT

在这个样例中,有两种可能的安排方式:1,3,5 或者 2,3,5。即 3 和 5
后面必然躲着一个忍者。
考虑第一个灌木丛,存在一种安排方案使得它的后面躲着忍者,但也存在一
种安排方案使得它后面没有躲忍者,因此不应该输出 1。同理,不应该输出 2。

贪心。
把所有不可能出现忍者的位置除去,重新编号序列  可以用差分实现
对区间进行操作,对于可能存在忍者的区间,把它缩小到没有不可能出现忍者的位置,并去除包含关系
这样,剩下的区间就只能是l递增,r递增的了
对于每个剩下的区间,我们都要选一个区间内的点,根据贪心来说,选右端点最优
因为在几个区间重复的部分选一点可以使这几个区间都被处理,右端点最可能被几个区间包含

因此我们得到贪心策略:
对于每一个有效区间,选择右端点可以使满足每个区间的要求(当然有些区间包含之前选择的右端点就不选了),并让已知位置的忍者数最少

但是每个区间我们不一定要选择r点,还可能选择r-1,r-2,r-3...这些点来使得区间满足
现在我们要判断的是对于某一个区间,我们是否能唯一选择r点必定出现忍者

我们假设在r-1放一个忍者来满足当前区间且在r不放忍者,如果确实可以满足那么r点不一定会出现忍者
预处理出f[i],g[i]表示从前向后,从后向前选择点使得 到i的前缀,后缀区间都满足
设r-1不能满足的向前数第一个区间为t1,向后数第一个区间为t2   那么r-1不可行的条件就是f[t1]+g[t2]+1>K

至于为什么要选择r-1来判断r可行, 是因为r-1更有可能被更多的区间包含,让r不一定出现忍者的期望更大

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#define ll long long
#define N 100050
using namespace std;
int n,m,k,cnt,val[N],f[N],g[N],cf[N],ql[N],qr[N];
struct query{int l,r,c;}q[N];
vector<pair<int,int> >p;
int main(){
scanf("%d%d%d",&n,&k,&m); //重新构造序列
for(int i=1;i<=m;i++){
scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].c);
if(!q[i].c)cf[q[i].l]++,cf[q[i].r+1]--;
}
int now=0;
for(int i=1;i<=n;i++){
now+=cf[i];
if(now<=0)ql[i]=qr[i]=++cnt,val[cnt]=i;
}
if(cnt==k){
for(int i=1;i<=cnt;i++)printf("%d\n",val[i]);
return 0;
}
for(int i=1;i<=n;i++)if(!qr[i])qr[i]=qr[i-1];
ql[n+1]=n+1;
for(int i=n;i;i--)if(!ql[i])ql[i]=ql[i+1];
for(int i=1;i<=m;i++){
if(!q[i].c)continue;
int l=q[i].l,r=q[i].r;
l=ql[l];r=qr[r];
if(l>r)continue;
p.push_back(make_pair(l,r));
}
sort(p.begin(),p.end());
int tp=0,fg=0;
for(int i=0;i<p.size();i++){
while(tp&&p[i].first>=ql[tp]&&p[i].second<=qr[tp])tp--;
ql[++tp]=p[i].first;qr[tp]=p[i].second;
}
//重新构造序列 int R=0,L=n+1;
for(int i=1;i<=tp;i++){
if(ql[i]>R)f[i]=f[i-1]+1,R=qr[i];
else f[i]=f[i-1];
}
for(int i=tp;i;i--){
if(qr[i]<L)g[i]=g[i+1]+1,L=ql[i];
else g[i]=g[i+1];
}
for(int i=1;i<=tp;i++){
if(f[i]==f[i-1])continue;
if(ql[i]==qr[i]){
printf("%d\n",val[ql[i]]);
fg=1;continue;
}
int x=qr[i]-1,l=1,r=i-1,t1=0,t2=tp+1;
while(l<=r){
int mid=l+r>>1;
if(qr[mid]<x)t1=mid,l=mid+1;
else r=mid-1;
}
l=i+1;r=tp;
while(l<=r){
int mid=l+r>>1;
if(ql[mid]>x)t2=mid,r=mid-1;
else l=mid+1;
}
if(f[t1]+g[t2]+1>k){
printf("%d\n",val[qr[i]]);
fg=1;
}
}
if(!fg)puts("-1");
return 0;
}

bzoj2811[Apio2012]Guard 贪心的更多相关文章

  1. bzoj2811 [Apio2012]Guard

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2811 [题解] 首先我们先把没看到忍者的段去掉,可以用线段树做. 如果剩下的就是K,那么特判 ...

  2. bzoj 2811: [Apio2012]Guard【线段树+贪心】

    关于没有忍者的区间用线段树判就好啦 然后把剩下的区间改一改:l/r数组表示最左/最右没被删的点,然后删掉修改后的左边大于右边的:l升r降排个序,把包含完整区间的区间删掉: 然后设f/g数组表示i前/后 ...

  3. 【bzoj2809】[Apio2012]dispatching 贪心+可并堆

    题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...

  4. [BZOJ2809][Apio2012]dispatching 贪心+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 我们考虑以每一个节点作为管理者所得的最优答案,一定是优先选择所要薪水少的忍者.那么首 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. Bzoj 3126[Usaco2013 Open]Photo 题解

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 335  Solved: 169[Submit] ...

  7. [差分][二分][贪心]luogu P3634 [APIO2012]守卫

    题面 https://www.luogu.com.cn/problem/P3634 给m个限制,可以是一段区间中必须有或者必须无忍者 最多有k个忍者,问有多少个位点一定有忍者 分析 首先用差分标记一下 ...

  8. C、Guard the empire(贪心)

    链接:https://ac.nowcoder.com/acm/contest/3570/C 来源:牛客网 题目描述 Hbb is a general and respected by the enti ...

  9. luogu P1552 [APIO2012]派遣 题解--可并堆/贪心

    题目链接: https://www.luogu.org/problemnew/show/P1552 分析: 一开始愣是没看懂题,后面发现就是你要找一个树上点集使得各点权值之和小于\(M\),并且找一个 ...

随机推荐

  1. scrapy 数据存储mysql

    #spider.pyfrom scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Ru ...

  2. 01-JavaScript之变量

    这个系列的文章主要讲解JavaScript的常见用法,适合于初中级的前端开发人员,也可以对比TypeScript的系列文章来看. 先介绍JavaScript的变量与常见变量的函数,代码如下: //变量 ...

  3. Java面试题合集(二)

    接下来几篇文章准备系统整理一下有关Java的面试题,分为基础篇,javaweb篇,框架篇,数据库篇,多线程篇,并发篇,算法篇等等,陆续更新中.其他方面如前端后端等等的面试题也在整理中,都会有的. 注: ...

  4. Java.nio-随机读写汉字

    笔者最近在用多线程来计算中文文本的标点符号数目,遇到了以下问题: 在Windows下,文本中汉字通常采用Unicode编码,这就导致需要随机(RandomAccessFile)读取文本时,产生乱码现象 ...

  5. WIN10系统触摸板快捷键

    快捷的手势操作,有时候会让人脱离鼠标,只要不是非用不可的情况,基本上这些常用手势就能让我们摆脱鼠标携带不便或者桌子地方小的烦恼.iOS上的快捷手势很是受欢迎,win10上却鲜有人知晓,尤其是非开发人员 ...

  6. 深度学习之 rnn 台词生成

    深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...

  7. HTTP协议扫盲(四)HTTP协议进阶 - MIME类型

    一.概念和原理 1.什么是MIME类型? MIME类型,即多用途互联网邮件扩展,它是一个互联网标准,在1992年最早应用于电子邮件系统,但后来也应用到浏览器. 服务器会将它们发送的多媒体数据的类型告诉 ...

  8. Python学习之再议row_input

    再议raw_input birth = raw_input('birth: ') if birth < 2000: print '00前' else: print '00后' 运行结果: bir ...

  9. Spark测试代码

    测试代码: import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.hive.HiveContext ...

  10. 单源最短路径---Bellman-Ford算法

    传送门: Dijkstra Bellman-Ford SPFA Floyd 1.Dijkstra算法的局限性 像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = ...