BZOJ4926 皮皮妖的递推
第二次乱出题。
为了方便,以m=2为例,把原式变一下形,得f(i)+f(f(i-1))=i
我们先无视掉那个-1,我们发现:诶,这个东西好像斐波那契数列。
具体地,我们用f(n)表示把n用斐波那契数列进行拆分后,每一项的前一项的和。
例:20=13+5+2,f(20)=8+3+1
我们惊奇的发现现在已经可以满足f(i)+f(f(i))=i这个式子了。
但是现在有个-1,怎么办呢,其实很简单,我们定义斐波那契数列第0项为1即可。
证明:设$g_0=g_1=g_2=1,g_i=g_{i-1}+g_{i-2},n=\sum_{i=1}^kg_{a_i}$
我们考虑n-1的形式。
1.
n-1与n的前k-1项一定相同,所以在前k-1项满足这个式子。
2.
当n的第k项为1时,n-1没有第k项,此时1+0=1,满足这个式子。
3.
否则当n的第k项不为1时,你会发现$f(f(g_{a_k}-1))=g_{a_{k-2}}$
这个东西不好说明,举个例子
$g_{a_k}=34=21+8+3+1+1$
$g_{a_k}-1=21+8+3+1$
$f(f(g_{a_k}))=8+3+1+1=13=g_{a_{k-2}}$
这就是为什么我要把第0项设成1的原因,所以第k项也满足。
证毕。
当m更大时,只需把g的递推式改为$g_i=g_{i-1}+g_{i-m}$即可。
#include <cstdio> int m,t;
long long n,a1,f[]; int main() {
scanf("%lld%d",&n,&m);
for(int i=;i<=m;i++) f[i]=;
for(int i=m+;;i++) {
f[i]=f[i-]+f[i-m];
if(f[i]>n) {t=i-; break;}
}
for(int i=t;n;i--) if(f[i]<=n) n-=f[i],a1+=f[i-];
printf("%lld",a1);
return ;
}
BZOJ4926 皮皮妖的递推的更多相关文章
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- 从一道NOI练习题说递推和递归
一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...
- Flags-Ural1225简单递推
Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 简单递推 HDU-2108
要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...
- [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索
1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- openjudge1768 最大子矩阵[二维前缀和or递推|DP]
总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...
随机推荐
- Android网络传输中必用的两个加密算法:MD5 和 RSA 及Base64加密总结
(1)commons-codec包简介 包含一些通用的编码解码算法.包括一些语音编码器,Hex,Base64.MD5 一.md5.base64.commons-codec包 commons-codec ...
- Flask 学习 六 大型程序结构
pip freeze >requirement.txt 自动生成版本号 pip install -r requirement.txt 自动下载对应的库 梳理结构 config.py #!/usr ...
- DML数据操作语言之复杂查询
1.视图(View) 我们知道,在关系型数据库中,用来保存实际数据记录的是数据表.和表同等概念也是用来保存东西是:视图. 但是数据表是用来保存实际数据记录的,而视图是用来保存常用select语句的. ...
- LeetCode & Q169-Majority Element-Easy
Array Divide and Conquer Bit Manipulation Description: Given an array of size n, find the majority e ...
- Python内置函数(14)——bytes
英文文档: class bytes([source[, encoding[, errors]]]) Return a new "bytes" object, which is an ...
- C语言学习之弹跳小球
重新回过头来看了一遍C语言,才发现我自己的无知,C语言其实好强大,我之前学的不过是一点C语法和做几个数学题.正好3月份的考试要考C语言,重新学一遍,先是在中国大学mooc上把翁恺老师的C语言刷了一遍, ...
- 新概念英语(1-63)Thank you, doctor.
新概念英语(1-63)Thank you, doctor. Who else is in bed today? why? A:How's Jimmy today? B:Better. Thank yo ...
- iOS 封装.framework 以及使用
.framework是什么? .framework是什么? 这个问题相信做iOS的都知道答案. 在我们的日常开发中,经常会用到各种已经封装好的库,比如支付宝.微信SDK等等中的库,这些库可以给我们的开 ...
- Hive函数:CUME_DIST,PERCENT_RANK
参考自:大数据田地http://lxw1234.com/archives/2015/04/185.htm 数据准备: d1,user1, d1,user2, d1,user3, d2,user4, d ...
- Hadoop MR编程
Hadoop开发job需要定一个Map/Reduce/Job(启动MR job,并传入参数信息),以下代码示例实现的功能: 1)将一个用逗号分割的文件,替换为“|”分割的文件: 2)对小文件合并,将文 ...