第二次乱出题。
为了方便,以m=2为例,把原式变一下形,得f(i)+f(f(i-1))=i
我们先无视掉那个-1,我们发现:诶,这个东西好像斐波那契数列。
具体地,我们用f(n)表示把n用斐波那契数列进行拆分后,每一项的前一项的和。
例:20=13+5+2,f(20)=8+3+1
我们惊奇的发现现在已经可以满足f(i)+f(f(i))=i这个式子了。
但是现在有个-1,怎么办呢,其实很简单,我们定义斐波那契数列第0项为1即可。
证明:设$g_0=g_1=g_2=1,g_i=g_{i-1}+g_{i-2},n=\sum_{i=1}^kg_{a_i}$
我们考虑n-1的形式。
1.
n-1与n的前k-1项一定相同,所以在前k-1项满足这个式子。
2.
当n的第k项为1时,n-1没有第k项,此时1+0=1,满足这个式子。
3.
否则当n的第k项不为1时,你会发现$f(f(g_{a_k}-1))=g_{a_{k-2}}$
这个东西不好说明,举个例子
$g_{a_k}=34=21+8+3+1+1$
$g_{a_k}-1=21+8+3+1$
$f(f(g_{a_k}))=8+3+1+1=13=g_{a_{k-2}}$
这就是为什么我要把第0项设成1的原因,所以第k项也满足。
证毕。

当m更大时,只需把g的递推式改为$g_i=g_{i-1}+g_{i-m}$即可。

#include <cstdio>

int m,t;
long long n,a1,f[]; int main() {
scanf("%lld%d",&n,&m);
for(int i=;i<=m;i++) f[i]=;
for(int i=m+;;i++) {
f[i]=f[i-]+f[i-m];
if(f[i]>n) {t=i-; break;}
}
for(int i=t;n;i--) if(f[i]<=n) n-=f[i],a1+=f[i-];
printf("%lld",a1);
return ;
}

BZOJ4926 皮皮妖的递推的更多相关文章

  1. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  2. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  3. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  4. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 简单递推 HDU-2108

    要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...

  7. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

随机推荐

  1. 同一个页面同时拥有collectionView和navigationBar和tabBar时可能遇到的问题

    写一个页面的时候,遇到了页面加载时候collectionView的最下面少了49个像素的位置,切换去别的页面之后,再返回,又变回正常,多方求解无果后,发现原来是系统自带的适应功能导致的,加入以下代码即 ...

  2. Linux下Apache服务的查看和启动

      cd到/etc/rc.d/init.d/目录,并列出该目录下的所有文件,看看是否有httpd   使用httpd -v查看已经安装的httpd的版本   使用rpm -qa | grep http ...

  3. eclipse下maven一些配置方法汇总

    随着eclipse的不同版本的变更:对maven插件的安装也有着不同的差异:之前也在一些版本的eclipse上安装成功地,但是最近又遇到了一些麻烦,故将这些方法记录下来: 大家都知道的最常用的一种方式 ...

  4. 数据恢复案例分享:MSSQL 2000 错误823

    一.故障描述 MSSQL Server 2000 附加数据库错误823,附加数据库失败.数据库没有备份,不能通过备份恢复数据库,急需恢复数据库中的数据. 二.故障分析SQL Server数据库 823 ...

  5. JAVA_SE基础——62.String类的构造方法

    下面我先列出初学者目前用到的构造方法 String 的构造方法:     String()  创建一个空内容 的字符串对象.   String(byte[] bytes)  使用一个字节数组构建一个字 ...

  6. vue+mint-ui的微博页面(支持评论@添加表情等)

    github地址 https://github.com/KyrieZbw/Sneakers (如果觉得不错就给个小星星) 预览地址 页面展示 技术栈 vue2 + vuex + vue-router ...

  7. 用javascript做别踩白块游戏2

    这一次做一个好一点的,要求黑块自动下落,且速度逐渐加快 <!DOCTYPE html> <html> <head> <!-- 禁用缩放功能 --> &l ...

  8. SpringCloud应用入库后乱码问题

    一.现象 1.请求 2.入库后 二.解决过程 1.配置application.properties 2.代码配置 3.数据库(关键!!) 3.请求 三.验证过程 1.win10 - 本地验证通过 2. ...

  9. Docker学习笔记 - Docker容器的日志

    docker logs  [-f]  [-t]  [--tail]  容器名 -f -t --tail="all" 无参数:返回所有日志 -f 一直跟踪变化并返回 -t 带时间戳返 ...

  10. SpringCloud的部署模型

    http://www.th7.cn/Program/java/201608/919853.shtml