流水车间调度算法分析的简单+Leapms实践--混合整数规划的启发式建模

清华大学出版社出版的白丹宇教授著作《流水车间与开放车间调度算法渐近分析》采用渐近分析方法分析多个NP-难类启发调度算法的收敛性,学术性很强。

本帖用数学规划模型方法对比精确模型和启发模型之间的差异,从实践角度感觉启发算法的魅力。本帖的要点如下:

1。有人说数学规划模型是精确方法。其实广义地讲,数学规划模型也可以是启发算法,只要你对问题进行启发建模就行。

2。启发建模会牺牲求解精确性,但是对NP-难问题来说,由于对大规模问题的精确解很难获得,启发算法或启发建模是必须的。

3。当测试算法时,原始数据经常是随机生成的,最好能把数据的生成简洁地写进模型,那么测试就简单多了。

流水车间调度问题

假设有m个机器,n个工件,已知每个工件在不同机器上的加工时间,求如何排序工件在不同机器上的加工次序使得总完工时间最短(以此目标为例)。

流水车间调度的精确模型

设x[i][j] 为工件j 在机器i上的开始加工时间,设c为总完工时间,于是目标是:

      min c

c肯定大于任何工件在任何机器上的完成时间:

    c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n

把工件 j 在机器 i 上的加工时间设置为T[i][j]。

对两个工件 j1,j2, j1$\neq$ j2,在同一台机器上的加工时间不可以冲突,即:

    x[i][j2]>=x[i][j1]+T[i][j1] - M(-u[i][j1][j2])|i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i][j1]>=x[i][j2]+T[i][j2] - M*u[i][j1][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2

对同一个工件j, 其在两台不同机器 i1,i2, i1 $\neq $ i2上加工的时间不能冲突,即:

    x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2

说明一下引入的常量和变量:

where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
u[i][j1][j2] is a variable of binary|i=,..,m;j1=,..,n;j2=,..,n;j1<>j2
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2

提供计算得来的数据,注意T[i][j]是用随机函数随机生成的0-100之间的数:

data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]

提供数据,这里设m=3使得问题NP-难,n=100规模足够大:

data
m=
n=

总体的模型:

//x[i][j] -- start time of job j on machine i
min c
subject to
c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n
x[i][j2]>=x[i][j1]+T[i][j1] - M(-u[i][j1][j2])|i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i][j1]>=x[i][j2]+T[i][j2] - M*u[i][j1][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2
x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2
where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
u[i][j1][j2] is a variable of binary|i=,..,m;j1=,..,n;j2=,..,n;j1<>j2
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2
data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]
data
m=
n=

流水车间调度的启发模型

使用这个启发: 让在机器上加工时间较小的任务早些执行。即同一个机器上工件不冲突约束改变为:

    x[i][j2]>=x[i][j1]+T[i][j1] |i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]<T[i][j2]
x[i][j1]>=x[i][j2]+T[i][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]>=T[i][j2]

总体模型是:

//x[i][j] -- start time of job j on machine i
min c
subject to
c>=x[i][j]+T[i][j] | i=,..,m;j=,..,n
x[i][j2]>=x[i][j1]+T[i][j1] |i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]<T[i][j2]
x[i][j1]>=x[i][j2]+T[i][j2] | i=,..,m;j1=,..,n;j2=,..,n;j1<j2;T[i][j1]>=T[i][j2]
x[i2][j]>=x[i1][j]+T[i1][j] - M(-v[i1][i2][j])| i1=,..,m;i2=,..,m;j=,..,n;i1<i2
x[i1][j]>=x[i2][j]+T[i2][j] - M*v[i1][i2][j] | i1=,..,m;i2=,..,m;j=,..,n;i1<i2
where
m,n are integers
M is a number
c is a variable of number
T[i][j] is a number|i=,..,m;j=,..,n
x[i][j] is a variable of nonnegative number|i=,..,m;j=,..,n
v[i1][i2][j] is a variable of binary|i1=,..,m;i2=,..,m;j=,..,n;i1<>i2
data_relation
T[i][j]=rand()|i=,...,m;j=,...,n
M=sum{i=,..,m;j=,..,n}T[i][j]
data
m=
n=

对比试算

将两个模型调入+Leapms环境中进行解析。

精确模型有3061个变量和30600个约束:

启发模型有901个变量,15750个约束:

两者不仅是变量和约束数字的差异,关键是模型结构上的差异。

在+Leapms中使用cplex命令呼叫 CPLEX求解:

精确模型在笔者能忍受的时间内求不到精确解,两分钟之后的最好解是5715, gap 96%,这样大的gap很难降下来。刚刚几乎死机,赶紧杀掉进程,保护本帖。

启发模型呼叫CPLEX后瞬间被求解,最优解4904。

关于渐进性的进一步实验统计得换m,n值慢慢算,有时间的再全面试下,该吃饭了,先下了。最后贴下两个模型的PDF摘录。

两个模型的PDF摘录:

流水车间调度算法分析的简单+Leapms实践--混合整数规划的启发式建模的更多相关文章

  1. 【优化算法】遗传算法GA求解混合流水车间调度问题(附C++代码)

    00 前言 各位读者大家好,好久没有介绍算法的推文了,感觉愧对了读者们热爱学习的心灵.于是,今天我们带来了一个神奇的优化算法--遗传算法! 它的优点包括但不限于: 遗传算法对所求解的优化问题没有太多的 ...

  2. rt-thread的位图调度算法分析

    转自:http://blog.csdn.net/prife/article/details/7077120 序言 期待读者 本文期待读者有C语言编程基础,后文中要分析代码,对其中的一些C语言中的简单语 ...

  3. 【转】rt-thread的位图调度算法分析

    序言 期待读者 本文期待读者有C语言编程基础,后文中要分析代码,对其中的一些C语言中的简单语句不会介绍,但是并不要求读者有过多的C基础,比如指针和链表等不会要求太多,后面在分析代码时,会附带地介绍相关 ...

  4. Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题

    Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题 <整数规划>[1]一书作者L. A. Wolsey对批量问题(Lot-sizing Problem)做了 ...

  5. htmlayout 最简单的实践,用于理解实现原理。

    / testHtmlayout.cpp : 定义应用程序的入口点. // #include "stdafx.h" #include "testHtmlayout.h&qu ...

  6. LVS的调度算法分析

    LVS调度算法 一.静态调度算法 1.  rr(round robin)轮询调度,即调度器将客户端的请求依次的传递给内部的服务器,从1到N,算法简洁,无须记录状态,但是不考虑每台服务器的性能. 配置如 ...

  7. RT-Thread的位图调度算法分析(最新版)

    RT-Thread的内核调度算法 rt-thread的调度算法为基于优先级调度和基于时间片轮转调度共存的策略.rt-thread内核中存在多个线程优先级,并且支持多个线程具有同样的线程优先级.线程级别 ...

  8. Java调度框架Quartz简单示例

    Quartz的大名如雷贯耳,这里就不赘述,而且本文也不作为深入探讨,只是看完Quartz的官方文档后,下个简单示例,至少证明曾经花了点时间学习过,以备不时之需. Quartz使用了SLF4J,所以至少 ...

  9. javascript简单计算器实践

    参考部分资料,编写一个简单的计算器案例,虽然完成了正常需求,但是也有不满之处,待后续实力提升后再来补充,先把不足之处列出: 1:本来打算只要打开页面,计算器的输入框会显示一个默认为0的状态,但是在输入 ...

随机推荐

  1. CSS3实例分享之多重背景的实现(Multiple backgrounds)

    CSS3的诞生为我们解决了这一问题,在CSS3里,通过background-image或者background可以为一个容器设置多张背景图像,也就是说可以把不同背景图象只放到一个块元素里. 首先我们来 ...

  2. 后端开发实践——Spring Boot项目模板

    在我的工作中,我从零开始搭建了不少软件项目,其中包含了基础代码框架和持续集成基础设施等,这些内容在敏捷开发中通常被称为"第0个迭代"要做的事情.但是,当项目运行了一段时间之后再来反 ...

  3. NIO(生活篇)

    今晚是个下雨天,写完今天最后一行代码,小鲁班起身合上电脑,用滚烫的开水为自己泡制了一桶老坛酸菜牛肉面.这大概是苦逼程序猿给接下来继续奋战的自己最好的馈赠.年轻的程序猿更偏爱坐在窗前,在夜晚中静静的享受 ...

  4. css中margin为负数的深入研究

    注:以下实验的元素均为块级元素,inline-block和inline本身对margin某些方向上都是无效的,所以这里不予讨论. margin-left或者margin-right为负数 当块元素wi ...

  5. Element-ui使用技巧

    使用第三方字体包 把下载后的*.zip字体包放到项目中在main.js中引用. import "@/assets/font/iconfont.css"; 注意一定要放到elemen ...

  6. Spring Boot整合Mybatis并完成CRUD操作

    MyBatis 是一款优秀的持久层框架,被各大互联网公司使用,本文使用Spring Boot整合Mybatis,并完成CRUD操作. 为什么要使用Mybatis?我们需要掌握Mybatis吗? 说的官 ...

  7. ajax提交数据

    ajax提交数据 注意:获取值可以从方法参数传过来 也可以通过jquery获取对应标签的值:同时参数要与请求的动作方法的参数一致,否则值无法映射 发送 ajax (get 方式简写)请求      注 ...

  8. Hibernate学习——持久化类的学习

    A.概念 持久化:将内存中的对象持久化(存储)到数据库的过程.Hibernate就是持久化的框架. 持久化类:一个普通java对象与数据库的表建立了映射关系,那么这个类在Hiberna中被称为持久化类 ...

  9. 设计模式之迭代器模式——Java语言描述

    迭代器模式是Java和.NET编程环境中非常常用的设计模式.这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示 介绍 意图 提供一种方法顺序访问一个聚合对象中各个元素,无需暴露该对象的内 ...

  10. ionic cordova build android error: commamd failed with exit code eacces

    问题: 电脑的gradle版本为Gradle 5.0,然而 因为 添加的android 平台为6.3.0 gradle 是 4.1版本 电脑已存在 gradle的情况下,add platform 成功 ...