典型时间复杂度

我们知道算法的执行效率,可以从它的时间复杂度来推算出一二。而典型的时间复杂度有哪些类型呢?



由上图,可以看出,除了常数时间复杂度外,logN型的算法效率是最高的。今天就介绍三种非常easy的logN型算法。

对分查找

给定一个整数X和整数A0,A1,…,An-1,后者已经预先排序并在内存中,求是的Ai= X的下表i,如果X不在数据中,则返回i = -1.

- (int)BinarySearch:(NSArray *)originArray element:(int)element
{
    int low, mid, high;
    low = 0; high = (int)originArray.count - 1;
    while (low <= high) {
        mid = (low + high) / 2;
        if ([originArray[mid] intValue] < element) {
            low = mid + 1;
        } else if ([originArray[mid] intValue] > element) {
            high = mid -1;
        } else {
            return mid;
        }
    }
    
    return -1;
}

* 分析 :*通过上面的程序可以看出,要算出时间复杂度,就是求出while循环的次数。

mid 每次的取值分别是数组长度(N-1)/2,(N-1)/2/2,(N-1)/2/2/2,…,1,0,-1。那么只用求出2的多少次方等于N-1,再加上可能的多需要的次数2。假设2的f次方等于N-1,最大时间即为log(N-1) + 2。因此对分查找的时间复杂度为logN。再举一个实际的例子,假设最初high = 128,low = 0,则mid的最大取值为64,32,16,8,4,2,1,0,-1。大家可以计算时间。

欧几里得算法

第二个是计算最大公因数的欧几里得算法。两个整数的最大公因数Gcd是同时整除二者的最大整数。于是,Gcd(50,15) = 5。

- (unsigned int)Gcd:(unsigned int)m n:(unsigned int)n
{
    unsigned int Rem;
    while (n > 0) {
        Rem = m % n;
        m = n;
        n = Rem;
    }
    return m;
}

算法超级简单,但是里面还是有一些精髓的。算法假设m>=n,但是如果m < n,则在第一次while循环后,m和n 会互相交换。

该算法的整个运行时间依赖于确定余数序列的长度,也就是while循环的次数。

依然举例m = 1989 和n = 1590,则余数序列是399,393,6,3,0。从而,Gcd(1989,1590) = 3。

虽然看不出余数的值是按照常数引子递减,有时候递减的非常少,例如从399递减到393。但是,我们可以证明,两次迭代以后,余数最多是原始值的一半。迭代次数至多是2logN,所以时间复杂度是logN。

怎么证明 M > N,则M mod N < M /2呢?

如果N =< M/2,则由于余数小于N,即M mod N < N <= M/2,所以余数也小于M/2。

如果N> M/2,则此时M中有个N,从而余数M-N < M/2。

幂运算

最后一个算法,是计算一个整数的幂。我们可以用乘法的次数作为运行时间的度量。

计算X的N次方常见的算法是使用N-1次乘法自乘。但是用递归算法更好。

- (long)Pow:(long)x n:(unsigned int)n
{
    if (n == 0) {
        return 1;
    }
    if (n == 1) {
        return x;
    }
    
    if ([self isEven:n]) {
        return [self Pow:x * x n:n / 2];
    } else {
        return [self Pow:x * x n:n / 2] * x;
    }
} - (BOOL)isEven:(unsigned int)n
{
    if (n % 2 == 0) {
        return YES;
    } else {
        return NO;
    }
}

如果N是偶数,则X的N次方 = X的N/2次方乘以X的N/2次方,如果N是奇数,则X的N次方 = X 的(N-1)/2 次方乘以 X的(N-1)/2次方乘以X。

显然,所需要的乘法次数最多是2logN。那么时间复杂度就是logN咯。

算法之路(二)呈现O(logN)型的三个算法的更多相关文章

  1. 常见算法:C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,当中一个最小的公倍数是他们的最小公倍数,相同地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...

  2. 机器学习(二)——K-均值聚类(K-means)算法

    最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算 ...

  3. [4] 算法之路 - 插入排序之Shell间隔与Sedgewick间隔

    题目 插入排序法由未排序的后半部前端取出一个值.插入已排序前半部的适当位置.概念简单但速度不快. 排序要加快的基本原则之中的一个: 是让后一次的排序进行时,尽量利用前一次排序后的结果,以加快排序的速度 ...

  4. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  5. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

  6. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

  7. 排序算法总结(二)归并排序【Merge Sort】

    一.归并排序原理(Wikipedia) 归并排序本质是分治思想的应用,并且各层分治递归可以同时进行 1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 2.设定两个指针,最初位置 ...

  8. 我的VSTO之路(二):VSTO程序基本知识

    原文:我的VSTO之路(二):VSTO程序基本知识 开始之前,首先我介绍一下我的开发环境:VS2010 + Office 2010,是基于.Net framework 4.0和VSTO 4.0.以下的 ...

  9. js算法集合(二) javascript实现斐波那契数列 (兔子数列)

    js算法集合(二)  斐波那契数列 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列进行研究,来加深对循环的理解.     Javascript实 ...

随机推荐

  1. 51 nod 1406 与查询

    1406 与查询 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   有n个整数.输出他之中和x相与之后结果为x的有多少个.x从0 ...

  2. [BZOJ]4197: [Noi2015]寿司晚宴

    Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NO ...

  3. Codeforces Round #411 (Div. 1) D. Expected diameter of a tree

    题目大意:给出一个森林,每次询问给出u,v,问从u所在连通块中随机选出一个点与v所在连通块中随机选出一个点相连,连出的树的直径期望(不是树输出-1).(n,q<=10^5) 解法:预处理出各连通 ...

  4. 2015 多校联赛 ——HDU5402(模拟)

    For each test case, in the first line, you should print the maximum sum. In the next line you should ...

  5. bzoj 2229: [Zjoi2011]最小割

    Description 小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同 ...

  6. 一起来Fit TDMA over WiFi(2)

    3 收发流程分析与改进 收发流程分析涉及到具体代码,属于SDK驱动内容,不能完全公开,仅供参考,本系列文档中涉及到具体功能或代码时,请在自己的驱动代码中查找. QCA驱动从9.5开始,将原来的htc的 ...

  7. Selenium之unittest测试框架详谈及实操

    申明:本文是基于python3.x及selenium3.x. unittest,也可以称为PyUnit,可以用来创建全面的测试套件,可以用于单元自动化测试(模块).功能自动化测试(UI)等等. 官方文 ...

  8. SpringMVC中HandlerMapping的三种配置方式

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE beans PUBLIC "-/ ...

  9. CentOS Linux上安装Oracle11g笔记

    CentOS Linux上安装Oracle11g 到 otn.oracle.com 网站上下载 Linux版的oracle 11g 编辑 /etc/sysctl.conf : kernel.shmal ...

  10. Java为什么要配置环境变量及如何配置环境变量

    在没有配置环境变量之前,用cmd执行Java文件,需要指明Java的可执行文件,否则无法运行. 配置环境是为了在不用切换可执行文件目录下,方便Java程序的执行和控制. 那么环境变量就是让系统根据环境 ...