1 主流深度学习框架对比

当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研发,以便能占领市场。当前的框架有数十种之多,主流的如下(截止到2018年11月)

显然TensorFlow是独一无二的王者。第二名Keras,它是对TensorFlow或Theano接口的二次封装,严格意义上并不是一个独立的深度学习框架。TensorFlow目前也已经集成了Keras,使得安装了TensorFlow的用户就可以直接使用Keras了。

TensorFlow之所以能够从数十种框架中脱颖而出,主要优点有

  1. 出身高贵,是谷歌出品的。但其他很多框架出身也不差,例如PyTorch之于Facebook,MXNET之于Amazon
  2. 2015年就开源了,比较早的俘获了一大批开发者。这个确实是tf的一大先发优势,但PyTorch的前身Caffe,以及MXNET开源时间都不晚,而且Caffe流行时间比tf早,后来才被赶超的。更有Theano这样的绝对老前辈。由此可见,软件开源是多么重要。目前流行的深度学习框架也基本都开源了。
  3. 支持的开发语言多,支持Python Java Go C++等多种流行语言。相比某些框架,确实是优势很大。相比MXNET则小巫见大巫了。MXNET早期发展的一个主要方向就是前端多语言的支持,连MATLAB R Julia等语言都支持了。
  4. 运行效率高。早期的时候,其实tf的运行效率比很多框架都要低一些的。
  5. 安装容易,用户上手快,文档齐全,社区活跃。这个是tf的一个较大优势,特别是社区方面,也就是我们常说的生态优势。互联网头部集中效应十分明显,体现在开源软件上也是一样。这也是我认为最大的一个优势。

总结起来,TensorFlow虽然每个方面都不是绝对领先的优势,但贵在每个方面都做的不错,因此最终能够一骑绝尘,独领风骚。

学习Tensorflow框架内核,可以理解前端接口语言的支持,session生命周期,graph的构建、分裂和执行,operation的注册和运行,模块间数据通信,本地运行和分布式运行模式,以及CPU GPU TPU等异构设备的封装支持等。学习这些,对于模型的压缩 加速 优化等都是大有裨益的。

2 TensorFlow系统架构

TensorFlow设计十分精巧,基于分层和模块化的设计思想进行开发的。框架如下图

整个框架以C API为界,分为前端和后端两大部分。

  1. 前端:提供编程模型,多语言的接口支持,比如Python Java C++等。通过C API建立前后端的连接,后面详细讲解。
  2. 后端:提供运行环境,完成计算图的执行。进一步分为4层

    1. 运行时:分为分布式运行时和本地运行时,负责计算图的接收,构造,编排等。
    2. 计算层:提供各op算子的内核实现,例如conv2d, relu等
    3. 通信层:实现组件间数据通信,基于GRPC和RDMA两种通信方式
    4. 设备层:提供多种异构设备的支持,如CPU GPU TPU FPGA等

模型构造和执行流程

TensorFlow的一大特点是,图的构造和执行相分离。用户添加完算子,构建好整图后,才开始进行训练和执行,也就是图的执行。大体流程如下

  1. 图构建:用户在client中基于TensorFlow的多语言编程接口,添加算子,完成计算图的构造。
  2. 图传递:client开启session,通过它建立和master之间的连接。执行session.run()时,将构造好的graph序列化为graphDef后,以protobuf的格式传递给master。
  3. 图剪枝:master根据session.run()传递的fetches和feeds列表,反向遍历全图full graph,实施剪枝,得到最小依赖子图
  4. 图分裂:master将最小子图分裂为多个Graph Partition,并注册到多个worker上。一个worker对应一个Graph Partition。
  5. 图二次分裂:worker根据当前可用硬件资源,如CPU GPU,将Graph Partition按照op算子设备约束规范(例如tf.device('/cpu:0'),二次分裂到不同设备上。每个计算设备对应一个Graph Partition。
  6. 图运行:对于每一个计算设备,worker依照op在kernel中的实现,完成op的运算。设备间数据通信可以使用send/recv节点,而worker间通信,则使用GRPC或RDMA协议。

3 前端多语言实现 - swig包装器

TensorFlow提供了很多种语言的前端接口,使得用户可以通过多种语言来完成模型的训练和推断。其中Python支持得最好。这也是TensorFlow之所以受欢迎的一大原因。前端多语言是怎么实现的呢?这要归功于swig包装器。

swig是个帮助使用C或者C++编写的软件能与其它各种高级编程语言进行嵌入联接的开发工具。在TensorFlow使用bazel编译时,swig会生成两个wrapper文件

  1. pywrap_tensorflow_internal.py:对接上层Python调用
  2. pywrap_tensorflow_internal.cc:对接底层C API调用。

pywrap_tensorflow_internal.py 模块被导入时,会加载_pywrap_tensorflow_internal.so动态链接库,它里面包含了所有运行时接口的符号。而pywrap_tensorflow_internal.cc中,则注册了一个函数符号表,实现Python接口和C接口的映射。运行时,就可以通过映射表,找到Python接口在C层的实现了。

4 tensorflow 源码结构

TensorFlow源码基本也是按照框架分层来组织文件的。如下

其中core为tf的核心,它的源码结构如下

5 总结

TensorFlow框架设计精巧,代码量也很大,我们可以从以下部分逐步学习

    1. TensorFlow内核架构和源码结构。先从全局上对框架进行理解。
    2. 前后端连接的桥梁--Session,重点理解session的生命周期,并通过相关源码可以加深理解Python前端如何调用底层C实现。
    3. TensorFlow核心对象—Graph。图graph是TensorFlow最核心的对象,基本都是围绕着它来进行的。graph的节点为算子operation,边为数据tensor。
    4. TensorFlow图的节点 -- Operation。operation是图graph的节点,承载了计算算子。
    5. TensorFlow图的边 -- Tensor。Tensor是图graph的边,承载了计算的数据。
    6. TensorFlow本地运行时。
    7. TensorFlow分布式运行时。和本地运行时有一些共用的接口,但区别也很大。
    8. TensorFlow设备层。主要了解设备层的定义规范,以及实现。
    9. TensorFlow队列和并行运算。
    10. TensorFlow断点检查checkpoint,模型保存Saver,以及可视化tensorboard。这三个为TensorFlow主要的工具。

原文链接
本文为云栖社区原创内容,未经允许不得转载。

Tensorflow源码解析1 -- 内核架构和源码结构的更多相关文章

  1. 时序数据库 Apache-IoTDB 源码解析之系统架构(二)

    上一章聊到时序数据是什么样,物联网行业中的时序数据的特点:存量数据大.新增数据多(采集频率高.设备量多).详情请见: 时序数据库 Apache-IoTDB 源码解析之前言(一) 打一波广告,欢迎大家访 ...

  2. 【Mybatis源码解析】- 整体架构及原理

    整体架构 version-3.5.5 在深入了解Mybatis的源码之前,我们先了解一下Mybatis的整体架构和工作原理,这样有助于我们在阅读源码过程中了解思路和流程. 核心流程 在上一遍的入门程序 ...

  3. redux源码解析-redux的架构

    redux很小的一个框架,是从flux演变过来的,尽管只有775行,但是它的功能很重要.react要应用于生成环境必须要用flux或者redux,redux是flux的进化产物,优于flux. 而且r ...

  4. Spring4源码解析:BeanDefinition架构及实现

    一.架构图 首先共同看下总体的 Java Class Diagrams 图: 二.具体类实现 2.1 AttributeAccessor 接口定义了一个通用的可对任意对象获取.修改等操作元数据的附加契 ...

  5. 一.jQuery源码解析之总体架构

    (function (window, undefined) { //构建jQuery对象 var document = window.document, navigator = window.navi ...

  6. spring源码解析1--spring整体架构

    一.Spring整体架构图 关于Spring的基本介绍就不再赘述了,先展示Spring框架的整体架构图如下示: 二.Spring结构介绍 Spring主要分为Core Container.Test.D ...

  7. Android消息机制架构和源码解析

    http://wangkuiwu.github.io/2014/08/26/MessageQueue/

  8. Deeplab v3+中的骨干模型resnet(加入atrous)的源码解析,以及普通resnet整个结构的构建过程

    加入带洞卷积的resnet结构的构建,以及普通resnet如何通过模块的组合来堆砌深层卷积网络. 第一段代码为deeplab v3+(pytorch版本)中的基本模型改进版resnet的构建过程, 第 ...

  9. 内核通信之Netlink源码分析-用户内核通信原理2

    2017-07-05 上文以一个简单的案例描述了通过Netlink进行用户.内核通信的流程,本节针对流程中的各个要点进行深入分析 sock的创建 sock管理结构 sendmsg源码分析  sock的 ...

随机推荐

  1. 在MySQL和PostgreSQL之外,为什么阿里要研发HybridDB数据库?

    http://www.infoq.com/cn/news/2016/12/MySQL-PostgreSQL-Greenplum 编者按 在大数据火遍IT界之前,大家对数据信息的挖掘通常聚焦在BI(Bu ...

  2. Visual Studio Community 2013,功能完整,免费使用

    http://www.infoq.com/cn/news/2014/11/VSC2013 微软刚刚宣布了.NET平台的开源计划,与此同时,它还推出了源自Visual Studio Profession ...

  3. HTML标签fieldset

    一个不常用的HTML标签fieldset,不过我觉得比较有意思,其语法如下: <fieldset> <legend>fieldset名称</legend> < ...

  4. Robot Framework之测试用例分层实战

    1.1  测试用例的第一层(交互层) 1. 创建项目资源(Resource). 操作步骤: 点”项目名称”->右键,选New Resource,在弹窗Name 输入框输入资源名称 mykeywo ...

  5. Python并发编程之线程中的信息隔离(五)

    大家好,并发编程 进入第三篇. 上班第一天,大家应该比较忙吧.小明也是呢,所以今天的内容也很少.只要几分钟就能学完. 昨天我们说,线程与线程之间要通过消息通信来控制程序的执行. 讲完了消息通信,今天就 ...

  6. Python_文件与文件夹操作

    ''' os模块除了提供使用操作系统功能和访问文件系统的简便方法之外,还提供了大量文件与文件夹操作的方法. os.path模块提供了大量用于路径判断.切分.连接以及文件夹遍历的方法. shutil模块 ...

  7. linux学习(JDK,Tomcat,nginx)安装

    最近学习了在linux,在上面搭建了一个tomcat的服务器,后来又使用nginx进行反向代理了一下下,希望文章对初学者有所帮助. 1.安装JDK.(采用jdk的rpm包进行安装) 安装jdk之前需要 ...

  8. redux 中间件 --- applyMiddleware 源码解析 + 中间件的实战

    前传  中间件的由来 redux的操作的过程,用户操作的时候,我们通过dispatch分发一个action,纯函数reducer检测到该操作,并根据action的type属性,进行相应的运算,返回st ...

  9. springboot+mybatis+redis实现分布式缓存

    大家都知道springboot项目都是微服务部署,A服务和B服务分开部署,那么它们如何更新或者获取共有模块的缓存数据,或者给A服务做分布式集群负载,如何确保A服务的所有集群都能同步公共模块的缓存数据, ...

  10. java项目中通过添加filter过滤器解决ajax跨域问题

    1.在web.xml添加filter <filter> <filter-name>contextfilter</filter-name> <filter-cl ...