单调队列,顾名思义是指队列内的元素是有序的,队头为当前的最大值(单调递减队列)或最小值(单调递增序列),以单调递减队列为例来看队列的入队和出队操作:

1、入队:

如果当前元素要进队,把当前元素和队尾元素比较,如果当前元素小于队尾元素,那么当前元素直接进队,如果当前元素大于队尾元素,那么队尾出队,将当前元素和新的队尾再做比较,直到当前元素大于队尾元素或者队列为空。单调队列只能在队尾插入元素,队尾和队头都可以删除元素。

2、出队:

出队直接取队头即可,因为用单调队列就是为了取最值,而队头就是最值。

例子:将数组a[] = {3, 5, 2, 8, 1, 4, 7}依次入队,并保证队列为一个 单调递减 队列。

  • 3入队,队列为空直接入队,队列元素为:3;
  • 5入队,5和队尾比较,5大于3,3出队,队为空,5入队,队列元素为:5;
  • 2入队,2和队尾比较,2小于5,直接入队,队列元素为:5,2;
  • 8入队,8和队尾比较,2出队,8再和队尾比较,5出队,队为空,8入队,队列元素为:8;
  • 1入队,...,队列元素为:8,1;
  • 4入队,...,队列元素为:8,4;
  • 7入队,...,队列元素为:8,7。
实例应用:
1、给定一个数组a[]和一个长度为k的滑动窗口,该窗口从最左端移到最右端,找出窗口在每个位置是的最大值。
     例如:a[] = {7, 3, 2, 5, 6},k = 3。我们可以维护一个单调递减队列,这样对于每个位置,当前队列的队头就是最大值,只不过在入队的时候要检查一下队头的下标是否已经超出窗口的范围,如果超出就删除队头元素即可。为了方便写代码,单调队列很多时候保存的是下标,而不是数值本身。
  • i = 0,初始队列为空,7入队,队列为:{ 0(7) }, (0为下标,括号为下标对应的值) ,窗口区间为[0],最大值为队头a[0] = 7;
  • i = 1,队头下标没有超出k, 3入队,队列为:{ 0(7), 1(3) },窗口区间为[0,1],最大值为队头a[0] = 7;
  • i = 2,队头下标没有超出k,2入队,队列为:{ 0{7), 1(3), 2(2) },窗口区间为[0,1,2],最大值为队头a[0] = 7;
  • i = 3,队头下标为0超出k,删除队头,5入队,队列为:{ 3(5) },窗口区间为[1,2,3],最大值为队头a[3] = 5;
  • i = 4,队头下标没有超出k,6入队,队列为:{ 4(6) },窗口区间为[2, 3, 4],最大值为队头a[4] = 6;
  • 窗口继续向右滑动,如果当前队头下标超出范围就删除队头,然后去队头,没有超出范围就直接取队头。
这样整个算法就是O(n)的。
#include<iostream>
#include<cstdio>
using namespace std;
int n,m,a[2000010];
int q[2000010],h=1,t=1;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
printf("0\n");
q[1]=1;
for(int i=2;i<=n;i++)
{
printf("%d\n",a[q[h]]);
if(q[h]<=i-m)
h++;
while(a[i]<=a[q[t]]&&t>=h)
t--;
t++;
q[t]=i;
}
return 0;
}

单调队列——求m区间内的最小值的更多相关文章

  1. 洛谷1440 求m区间内的最小值

    洛谷1440 求m区间内的最小值 本题地址:http://www.luogu.org/problem/show?pid=1440 题目描述 一个含有n项的数列(n<=2000000),求出每一项 ...

  2. 求m区间内的最小值

    洛谷P1440 求m区间内的最小值 ............................................................................... 以上 ...

  3. P1886 滑动窗口&&P1440 求m区间内的最小值

    声明:下面这两个题就不要暴力了,学一学单调队列吧 推荐博文:https://www.cnblogs.com/tham/p/8038828.html 单调队列入门题 P1440 求m区间内的最小值 题目 ...

  4. 洛谷 P1440 求m区间内的最小值

    传送门 思路 由于数据范围很大,所以使用单调队列,和滑动窗口这道题类似 首先第一个数输出\(0\),因为第一个数之前没有数 然后通过样例我们发现,最后一个数并没有派上什么用场,所以循环\(n-1\)轮 ...

  5. LG1440 求 m 区间内的最小值

    题目描述 一个含有 \(n\) 项的数列 (\(n≤ 2000000\)),求出每一项前的 \(m\) 个数到它这个区间内的最小值.若前面的数不足 \(m\) 项则从第 \(1\) 个数开始,若前面没 ...

  6. 【题解】P1440 求m区间内的最小值

    求m区间内的最小值 题目描述: 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的数不足m项则从第1个数开始,若前面没有数则输出0. 分析: 读题之 ...

  7. 洛谷 1440 求m区间内的最小值

    洛谷  1440 求m区间内的最小值 题目描述 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的数不足m项则从第1个数开始,若前面没有数则输出0. ...

  8. P1440 求m区间内的最小值--洛谷luogu

    题目描述 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的数不足m项则从第1个数开始,若前面没有数则输出0. 输入输出格式 输入格式: 第一行两个 ...

  9. 洛谷—— P1440 求m区间内的最小值

    https://www.luogu.org/problemnew/show/P1440 题目描述 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的 ...

随机推荐

  1. 【Android 应用开发】 Application 使用分析

    博客地址 : http://blog.csdn.net/shulianghan/article/details/40737419 代码下载 : Android 应用 Application 经典用法; ...

  2. 检查一个二叉树是否平衡的算法分析与C++实现

    今天面试一个实习生,就想既然是未出校园,那就出一个比较基础的题吧,没想到答的并不如人意,对于树的操作完全不熟悉,因此此题算是未作答.原来我想看一下他分析问题的思路,优化代码的能力.接下来会把最近半年我 ...

  3. (NO.00003)iOS游戏简单的机器人投射游戏成形记(十四)

    我们首先必须将Level中所有机器人保存在某个数组里,因为该数组会在不同地方被访问,我们将其放在LevelRestrict类中,按道理应该放到GameState类中,这里从简. 打开LevelRest ...

  4. 下载android5.0源码

    方法还是与之前我介绍的下载源码的方法一样,但是repo需要更新一下,否则可能会出现以下错误: type commit tag v1.12.16 tagger Conley Owens <cco3 ...

  5. ubuntu wubi.exe 直接加载下载好的 amd64.tar.xz

    玩了这么久的LINUX,一直都是直机装UBUNTU,虚一下XP的,后来不得不直机用WIN7,只能WUBI装一下UBUNTU了.不得不说,在WIN7下虚一个UBUNTU真是相当麻烦.网络那块很是难搞,而 ...

  6. 关于C++程序的编码问题

    转自: http://blog.chinaunix.net/uid-26790551-id-3190813.html 我们传统的程序基本都只在Windows或只在Linux下运行,Windows程序使 ...

  7. AngularJS进阶(二十七)实现二维码信息的集成思路

    AngularJS实现二维码信息的集成思路        赠人玫瑰,手留余香.若您感觉此篇博文对您有用,请花费2秒时间点个赞,您的鼓励是我不断前进的动力,与君共勉!      注:点击此处进行知识充电 ...

  8. 内存数据网格hazelcast的一些机制原理

    hazelcast作为一个内存数据网格工具,还算比较优秀,听说有Apache顶级项目使用它,值得研究下,使用文档可以直接看官方文档,但机制原理相关的资料基本没有,本人硬撸源码写的一些东西,跟大家分享一 ...

  9. Smarty学习笔记(一)

    1.Smarty的配置: 将lib的内容复制到自己的工程,然后引入 实例化和配置Smarty基本属性: $smarty = new Smarty(); $smarty->left_delimit ...

  10. TCP 的那些事儿(上)(转)

    本文转载自陈皓博文TCP 的那些事儿(上). TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多 ...