题目描述

输入

输出

样例输入

3 4
1 2 2
1 2 1 3
1 2 1 1
1 3 1 3
2 3 2 3

样例输出

2 2
1 1
3 2
2 1

提示

N=100000,M=1000000

莫队+树状数组:

先考虑每次询问没有权值区间限制的情况,将询问离线排序,用一个数组记录答案,莫队即可。

但现在每次询问有了查询的权值区间,显然一个数组无法记录答案,我们用树状数组来记录答案。

对于第一问直接用树状数组即可,对于第二问先用数组记录每个权值是否出现过再用树状数组维护即可。

莫队时间复杂度是$O(mlog_{n}\sqrt{n})$,查询时间复杂度是$O(mlog_{n})$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct lty
{
int l,r;
int a,b;
int num;
}q[1000010];
int ans1[1000010];
int ans2[1000010];
int v1[100010];
int v2[100010];
int t[100010];
int s[100010];
int n,m;
int L,R;
int block;
inline bool cmp(lty x,lty y)
{
return (x.l/block)==(y.l/block)?x.r<y.r:x.l<y.l;
}
inline void add1(int x,int val)
{
for(int i=x;i<=100000;i+=i&-i)
{
v1[i]+=val;
}
}
inline void add2(int x,int val)
{
for(int i=x;i<=100000;i+=i&-i)
{
v2[i]+=val;
}
}
inline int ask1(int x)
{
int res=0;
for(int i=x;i;i-=i&-i)
{
res+=v1[i];
}
return res;
}
inline int ask2(int x)
{
int res=0;
for(int i=x;i;i-=i&-i)
{
res+=v2[i];
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
block=(int)sqrt(n+0.5);
block-=rand()%30;
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i]);
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&q[i].l,&q[i].r,&q[i].a,&q[i].b);
q[i].num=i;
}
sort(q+1,q+1+m,cmp);
L=1;
for(int i=1;i<=m;i++)
{
while(L>q[i].l)
{
L--;
if(!t[s[L]])
{
add2(s[L],1);
}
t[s[L]]++;
add1(s[L],1);
}
while(R<q[i].r)
{
R++;
if(!t[s[R]])
{
add2(s[R],1);
}
t[s[R]]++;
add1(s[R],1);
}
while(L<q[i].l)
{
if(t[s[L]]==1)
{
add2(s[L],-1);
}
t[s[L]]--;
add1(s[L],-1);
L++;
}
while(R>q[i].r)
{
if(t[s[R]]==1)
{
add2(s[R],-1);
}
t[s[R]]--;
add1(s[R],-1);
R--;
}
ans1[q[i].num]=ask1(q[i].b)-ask1(q[i].a-1);
ans2[q[i].num]=ask2(q[i].b)-ask2(q[i].a-1);
}
for(int i=1;i<=m;i++)
{
printf("%d %d\n",ans1[i],ans2[i]);
}
}

莫队+分块:

可以发现莫队+树状数组的做法时间复杂度主要在双指针移动时对答案的维护。

我们将树状数组改成分块,那么单次移动指针时间复杂度为$O(1)$,而单次查询的时间复杂度是$O(\sqrt{n})$。

这样莫队的时间复杂度是$O(m\sqrt{n})$,查询的时间复杂度为$O(m\sqrt{n})$。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct lty
{
int l,r;
int a,b;
int num;
}q[1000010];
int ans1[1000010];
int ans2[1000010];
int sum1[100010];
int sum2[100010];
int v1[100010];
int v2[100010];
int t[100010];
int s[100010];
int n,m;
int L,R;
int block;
inline bool cmp(lty x,lty y)
{
return (x.l/block)==(y.l/block)?x.r<y.r:x.l<y.l;
}
inline int get(int x)
{
return (x-1)/200+1;
}
inline void add1(int x,int val)
{
sum1[get(x)]+=val;
v1[x]+=val;
}
inline void add2(int x,int val)
{
sum2[get(x)]+=val;
v2[x]+=val;
}
inline int ask1(int l,int r)
{
int res=0;
for(int i=get(l)+1;i<=get(r)-1;i++)
{
res+=sum1[i];
}
if(get(l)==get(r))
{
for(int i=l;i<=r;i++)
{
res+=v1[i];
}
return res;
}
for(int i=l;i<=min(n,get(l)*200);i++)
{
res+=v1[i];
}
for(int i=(get(r)-1)*200+1;i<=r;i++)
{
res+=v1[i];
}
return res;
}
inline int ask2(int l,int r)
{
int res=0;
for(int i=get(l)+1;i<=get(r)-1;i++)
{
res+=sum2[i];
}
if(get(l)==get(r))
{
for(int i=l;i<=r;i++)
{
res+=v2[i];
}
return res;
}
for(int i=l;i<=min(n,get(l)*200);i++)
{
res+=v2[i];
}
for(int i=(get(r)-1)*200+1;i<=r;i++)
{
res+=v2[i];
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
block=(int)sqrt(n+0.5);
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i]);
}
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&q[i].l,&q[i].r,&q[i].a,&q[i].b);
q[i].num=i;
}
sort(q+1,q+1+m,cmp);
L=1;
for(int i=1;i<=m;i++)
{
while(L>q[i].l)
{
L--;
if(!t[s[L]])
{
add2(s[L],1);
}
t[s[L]]++;
add1(s[L],1);
}
while(R<q[i].r)
{
R++;
if(!t[s[R]])
{
add2(s[R],1);
}
t[s[R]]++;
add1(s[R],1);
}
while(L<q[i].l)
{
if(t[s[L]]==1)
{
add2(s[L],-1);
}
t[s[L]]--;
add1(s[L],-1);
L++;
}
while(R>q[i].r)
{
if(t[s[R]]==1)
{
add2(s[R],-1);
}
t[s[R]]--;
add1(s[R],-1);
R--;
}
ans1[q[i].num]=ask1(q[i].a,q[i].b);
ans2[q[i].num]=ask2(q[i].a,q[i].b);
}
for(int i=1;i<=m;i++)
{
printf("%d %d\n",ans1[i],ans2[i]);
}
}

BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块的更多相关文章

  1. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  2. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  3. BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)

    传送门 解题思路 莫队+树状数组.把求\([a,b]\)搞成前缀和形式,剩下的比较裸吧,用\(cnt\)记一下数字出现次数.时间复杂度\(O(msqrt(n)log(n)\),莫名其妙过了. 代码 # ...

  4. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  5. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  6. 51nod 1290 Counting Diff Pairs | 莫队 树状数组

    51nod 1290 Counting Diff Pairs | 莫队 树状数组 题面 一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[ ...

  7. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

  8. HihoCoder 1488 : 排队接水(莫队+树状数组)

    描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...

  9. BZOJ 3236 莫队+树状数组

    思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...

随机推荐

  1. Django-restframework 之频率源码分析

    Django-restframework 之频率源码分析 一 前言 经过权限判断之后就是进行频率的判断了,而频率的判断和权限又不一样,认证.权限和频率的执行流程都差不多,使用配置里面的相关类来进行判断 ...

  2. 06 入门 - Web服务器

    目录索引:<ASP.NET MVC 5 高级编程>学习笔记 开发和调试ASP.NET MVC程序,需要Web服务器的支持. Visual Studio 2012+开发环境提供了两种Web服 ...

  3. 学习day03

    1.结构标记  *****   做布局    1.<header>元素    <header></header>    ==> <div id=&quo ...

  4. <自动化测试方案_7>第七章、PC端UI自动化测试

    第七章.PC端UI自动化测试 UI自动化测试又分为:Web自动化测试,App自动化测试.微信小程序.微信公众号UI层的自动化测试工具非常多,比较主流的是UFT(QTP),Robot Framework ...

  5. 猴子吃桃儿问题(C#)

    猴子第一天摘了许多个桃子,先吃了所有桃子的一半,后又吃了一个:第二天又吃了剩下桃子的一半,后又吃了一个……第十天,剩1个桃子.问:猴子第一天摘了多少个桃子? 本程序对其做了修改,天数和吃一半后又吃了一 ...

  6. windows10远程桌面连接身份验证错误:函数不受支持,这可能是由于 CredSSP 加密 Oracle 修正

    前言:因windows10的更新,最近很多朋友会遇到mstsc远程连接桌面报错: windows10企业版解决方式: 按“win+R”,运行 gpedit.msc, 找:“计算机配置”->“管理 ...

  7. java 根据ip获取地区信息(淘宝和新浪)

    package com.test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStr ...

  8. 浅析C#中new、override、virtual关键字的区别

    Virtual : virtual 关键字用于修饰方法.属性.索引器或事件声明,并使它们可以在派生类中被重写. 默认情况下,方法是非虚拟的.不能重写非虚方法. virtual 修饰符不能与 stati ...

  9. 元数据Metadata

    元数据是什么? 元数据(Metadata),又称中介数据.中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置.历史数据. ...

  10. Jenkins-2.154 windows平台部署 FAQ

    部署过程中遇到的问题及解决办法如下 1.如何将 Jenkins 汉化? 1.进入系统管理 -> 插件管理 -> 选中“可选插件” 标签 -> 在过滤条件中输入“local”进行查找插 ...