python——对图像进行卷积操作,使用多个滤波器
线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。
对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。

Correlation 和 Convolution可以说是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性shift-invariant。平移不变性指我们在图像的每个位置都执行相同的操作。线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。这两个属性使得这个操作非常简单,因为线性操作是最简单的,然后在所有地方都做同样的操作就更简单了。
实际上,在信号处理领域,卷积有广泛的意义,而且有其严格的数学定义,但在这里不关注这个。
2D卷积需要4个嵌套循环4-double loop,所以它并不快,除非我们使用很小的卷积核。这里一般使用3x3或者5x5。而且,对于滤波器,也有一定的规则要求:
1)滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。
2)滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。
3)如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。
4)对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。
常见的卷积核:
soble_x = np.array(([-1, 0, 1], [-2, 0, 2], [-1, 0, 1]))
soble_y = np.array(([-1, -2, -1], [0, 0, 0], [1, 2, 1]))
soble = np.array(([-1, -1, 0], [-1, 0, 1], [0, 1, 1]))
prewitt_x = np.array(([-1, 0, 1], [-1, 0, 1], [-1, 0, 1]))
prewitt_y = np.array(([-1, -1,-1], [0, 0, 0], [1, 1, 1]))
prewitt = np.array(([-2, -1, 0], [-1, 0, 1], [0, 1, 2]))
laplacian = np.array(([0, -1, 0], [-1, 4, -1], [0, -1, 0]))
laplacian2 = np.array(([-1, -1, -1], [-1, 8, -1], [-1, -1, -1]))
不同的卷积核对图像进行滤波得到的效果是不同的,我们可以根据滤波器的特点分析出滤波器的功能,下面我们使用python代码对卷积操作进行实践:
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl def convolve(image, filt):
height, width = image.shape
h, w = filt.shape
height_new = height - h + 1
width_new = width - w + 1
image_new = np.zeros((height_new, width_new), dtype=np.float)
for i in range(height_new):
for j in range(width_new):
image_new[i,j] = np.sum(image[i:i+h, j:j+w] * filt)
image_new = image_new.clip(0, 255)
image_new = np.rint(image_new).astype('uint8')
return image_new if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False path = './simplepython/convolve/lena.png'
A = Image.open(path, 'r')
a = np.array(A)
soble_x = np.array(([-1, 0, 1], [-2, 0, 2], [-1, 0, 1]))
soble_y = np.array(([-1, -2, -1], [0, 0, 0], [1, 2, 1]))
soble = np.array(([-1, -1, 0], [-1, 0, 1], [0, 1, 1]))
prewitt_x = np.array(([-1, 0, 1], [-1, 0, 1], [-1, 0, 1]))
prewitt_y = np.array(([-1, -1,-1], [0, 0, 0], [1, 1, 1]))
prewitt = np.array(([-2, -1, 0], [-1, 0, 1], [0, 1, 2]))
laplacian = np.array(([0, -1, 0], [-1, 4, -1], [0, -1, 0]))
laplacian2 = np.array(([-1, -1, -1], [-1, 8, -1], [-1, -1, -1]))
weight_list = ('soble_x', 'soble_y', 'soble', 'prewitt_x', 'prewitt_y', 'prewitt', 'laplacian', 'laplacian2')
plt.figure(figsize=(10,4))
i = 1
for weight in weight_list:
R = convolve(a[:, :, 0], eval(weight))
G = convolve(a[:, :, 1], eval(weight))
B = convolve(a[:, :, 2], eval(weight))
I = 255 - np.stack((R, G, B), 2) plt.subplot(2, 4, i)
i += 1
plt.title("滤波器: %s"%(weight))
plt.axis('off')
plt.imshow(I)
plt.tight_layout(2)
plt.subplots_adjust(top=0.92)
plt.suptitle('不同的图像卷积操作')
plt.show()
上述代码中,image_new.clip(0, 255)函数的作用是将image_new中的值进行截断,小于等于0的置为0,大于等于255的置为255。np.rint(image_new).astype('uint8')的含义是将得到的图像矩阵转换为int型,在转换为uint8类型。eval(weight)函数的作用是将字符串值转换为对应的变量值。我们对lena图像进行操作,下面是得到的结果:


python——对图像进行卷积操作,使用多个滤波器的更多相关文章
- 用python实现对图像的卷积(滤波)
之前在看卷积神经网络,很好奇卷积到底是什么,最后看到了这篇文章http://blog.csdn.net/zouxy09/article/details/49080029,讲得很清楚,这篇文章中提到了对 ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- Python机器学习笔记:卷积神经网络最终笔记
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...
- ubuntu之路——day17.1 卷积操作的意义、边缘检测的示例、filter与padding的关系、卷积步长
感谢吴恩达老师的公开课,以下图片均来自于吴恩达老师的公开课课件 为什么要进行卷积操作? 我们通过前几天的实验已经做了64*64大小的猫图片的识别. 在普通的神经网络上我们在输入层上输入的数据X的维数为 ...
- ubuntu之路——day17.2 RGB图像的卷积、多个filter的输出、单个卷积层的标记方法
和单层图像的卷积类似,只需要对每一个filter构成的三层立方体上的每一个数字与原图像对应位置的数字相乘相加求和即可. 在这个时候可以分别设置filter的R.G.B三层,可以同时检测纵向或横向边缘, ...
- 【Python | opencv+PIL】常见操作(创建、添加帧、绘图、读取等)的效率对比及其优化
一.背景 本人准备用python做图像和视频编辑的操作,却发现opencv和PIL的效率并不是很理想,并且同样的需求有多种不同的写法并有着不同的效率.见全网并无较完整的效率对比文档,遂决定自己丰衣足食 ...
- ICLR 2020 | 抛开卷积,multi-head self-attention能够表达任何卷积操作
近年来很多研究将nlp中的attention机制融入到视觉的研究中,得到很不错的结果,于是,论文侧重于从理论和实验去验证self-attention可以代替卷积网络独立进行类似卷积的操作,给self- ...
- 比CNN表现更好,CV领域全新卷积操作OctConv厉害在哪里?
CNN卷积神经网络问世以来,在计算机视觉领域备受青睐,与传统的神经网络相比,其参数共享性和平移不变性,使得对于图像的处理十分友好,然而,近日由Facebook AI.新家坡国立大学.360人工智能研究 ...
- python 文件及文件夹操作
python 文件.目录操作(新增.移动.删除等) python 文件夹与文件操作 mport string, os, sys dir = '/var' print '----------- no s ...
随机推荐
- 阿里Java架构师谈谈架构和如何成为一个Java架构师
架构的定义 我们来看看软件架构的一般定义: 程序和计算系统软件体系结构是指系统的一个或多个结构. 该结构包括软件的构建,构建的外部可见属性以及它们之间的相互关系. 该体系结构不是可操作的软件. 具体来 ...
- tomcat启动报错:Address already in use: JVM_Bind
tomcat启动时出现Address already in use: JVM_Bind 的原因是因为端口被占用,有可能是因为多次启动tomcat或者启动了多个tomcat,或者是其他应用程序或者服务占 ...
- 登录测试用例sql语句注入
利用SQL注入漏洞登录后台的实现方法 作者: 字体:[增加 减小] 类型:转载 时间:2012-01-12我要评论 工作需要,得好好补习下关于WEB安全方面的相关知识,故撰此文,权当总结,别无它意.读 ...
- [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis
上一章 [ 搭建Redis本地服务器实践系列 ] :序言 作为开场白介绍了下为什么要写这个系列,从这个章节我们就开始真正的进入正题,开始搭建我们本地的Redis服务器.那么关于Redis的基本概念,什 ...
- 深入理解Java NIO
初识NIO: 在 JDK 1. 4 中 新 加入 了 NIO( New Input/ Output) 类, 引入了一种基于通道和缓冲区的 I/O 方式,它可以使用 Native 函数库直接分配堆外内存 ...
- 使用Iterator迭代器循环集合
1.Iterator迭代器用于遍历集合元素,获取迭代器可以使用. 2.Iterator提供了统一遍历集合元素的 方式 ,其提供了用于遍历集合的连个方法----- boolean hasNext()判 ...
- 你不知道的JavaScript--Item14 使用prototype的几点注意事项
1.在prototype上保存方法 不使用prototype进行JavaScript的编码是完全可行的,例如: function User(name, passwordHash) { this.nam ...
- Java面试题之对static的理解
1.静态变量 类型说明符是static.2.静态变量属于静态存储方式,其存储空间为内存中的静态数据区(在 静态存储区内分配存储单元),该区域中的数据在整个程序的运行期间一直占用这些存储空间(在程序整个 ...
- Java 读书笔记 (十七) Java 重写(Override)与重载(Overload)
重写(Override) 重写是子类对父类的允许访问的方法的实现过程重新编写,返回值和形参都不能改变,即外壳不变,核心重写. // 如果重写不是相当于重新定义了一个方法?那为什么不直接写,还要exte ...
- bzoj4904 [Ctsc2017]最长上升子序列
我们发现他让求的东西很奇怪,于是通过某D开头定理,我们转化为前m位的序列用k个不上升子序列最多能覆盖多少.数据范围小的时候可以网络流做,但是这道题显然不支持网络流的复杂度.然后有一个奇怪的东西叫杨氏矩 ...