In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/ \
2 - 3

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
| |
4 - 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directedgraph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

这道题给我们了一个无向图,让删掉组成环的最后一条边,其实这道题跟之前那道 Graph Valid Tree 基本没什么区别,三种解法都基本相同。博主觉得老题稍微变一下就是一道新题,而 onsite 遇到原题的概率很小,大多情况下都会稍稍变一下,所以举一反三的能力真的很重要,要完全吃透一道题也不太容易,需要多下功夫。首先来看递归的解法,这种解法的思路是,每加入一条边,就进行环检测,一旦发现了环,就返回当前边。对于无向图,还是用邻接表来保存,建立每个结点和其所有邻接点的映射,由于两个结点之间不算有环,所以要避免这种情况 1->{2}, 2->{1} 的死循环,用一个变量 pre 记录上一次递归的结点,比如上一次遍历的是结点1,那么在遍历结点2的邻接表时,就不会再次进入结点1了,这样有效的避免了死循环,使其能返回正确的结果,参见代码如下:

解法一:

class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
unordered_map<int, unordered_set<int>> m;
for (auto edge : edges) {
if (hasCycle(edge[], edge[], m, -)) return edge;
m[edge[]].insert(edge[]);
m[edge[]].insert(edge[]);
}
return {};
}
bool hasCycle(int cur, int target, unordered_map<int, unordered_set<int>>& m, int pre) {
if (m[cur].count(target)) return true;
for (int num : m[cur]) {
if (num == pre) continue;
if (hasCycle(num, target, m, cur)) return true;
}
return false;
}
};

既然递归能做,一般来说迭代也木有问题。但是由于 BFS 的遍历机制和 DFS 不同,所以没法采用利用变量 pre 来避免上面所说的死循环(不是很确定,可能是博主没想出来,有做出来的请在评论区贴上代码),所以采用一个集合来记录遍历过的结点,如果该结点已经遍历过了,那么直接跳过即可,否则就把该结点加入 queue 和集合,继续循环,参见代码如下:

解法二:

class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
unordered_map<int, unordered_set<int>> m;
for (auto edge : edges) {
queue<int> q{{edge[]}};
unordered_set<int> s{{edge[]}};
while (!q.empty()) {
auto t = q.front(); q.pop();
if (m[t].count(edge[])) return edge;
for (int num : m[t]) {
if (s.count(num)) continue;
q.push(num);
s.insert(num);
}
}
m[edge[]].insert(edge[]);
m[edge[]].insert(edge[]);
}
return {};
}
};

其实这道题最好的解法使用 Union Find 来做,论坛上清一色的都是用这种解法来做的,像博主用 DFS 和 BFS 这么清新脱俗的方法还真不多:) 其实 Union Find 的核心思想并不是很难理解,首先建立一个长度为 (n+1) 的数组 root,由于这道题并没有明确的说明n是多少,只是说了输入的二位数组的长度不超过 1000,那么n绝对不会超过 2000,加1的原因是由于结点值是从1开始的,而数组是从0开始的,懒得转换了,就多加一位得了。将这个数组都初始化为 -1,有些人喜欢初始化为i,都可以。开始表示每个结点都是一个单独的组,所谓的 Union Find 就是要让结点之间建立关联,比如若 root[1] = 2,就表示结点1和结点2是相连的,root[2] = 3 表示结点2和结点3是相连的,如果此时新加一条边 [1, 3] 的话,我们通过 root[1] 得到2,再通过 root[2] 得到3,说明结点1有另一条路径能到结点3,这样就说明环是存在的;如果没有这条路径,那么要将结点1和结点3关联起来,让 root[1] = 3 即可,参见代码如下:

解法三:

class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
vector<int> root(, -);
for (auto edge : edges) {
int x = find(root, edge[]), y = find(root, edge[]);
if (x == y) return edge;
root[x] = y;
}
return {};
}
int find(vector<int>& root, int i) {
while (root[i] != -) {
i = root[i];
}
return i;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/684

类似题目:

Friend Circles

Accounts Merge

Redundant Connection II

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/redundant-connection/

https://leetcode.com/problems/redundant-connection/discuss/112562/My-DFS-and-BSF-solutions

https://leetcode.com/problems/redundant-connection/discuss/107984/10-line-Java-solution-Union-Find.

https://leetcode.com/problems/redundant-connection/discuss/108010/C%2B%2B-solution-using-union-find

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Redundant Connection 冗余的连接的更多相关文章

  1. [LeetCode] 684. Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  2. [LeetCode] Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  3. LeetCode 684. Redundant Connection 冗余连接(C++/Java)

    题目: In this problem, a tree is an undirected graph that is connected and has no cycles. The given in ...

  4. [LeetCode] 685. Redundant Connection II 冗余的连接之 II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  5. Leetcode之并查集专题-684. 冗余连接(Redundant Connection)

    Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...

  6. [LeetCode] 685. Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  7. [Swift]LeetCode684. 冗余连接 | Redundant Connection

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  8. LeetCode 685. Redundant Connection II

    原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...

  9. LN : leetcode 684 Redundant Connection

    lc 684 Redundant Connection 684 Redundant Connection In this problem, a tree is an undirected graph ...

随机推荐

  1. CSS速查列表-1-(background)背景

    CSS 背景 CSS 属性定义背景效果: background-color background-image background-repeat background-attachment backg ...

  2. 2017年PHP程序员未来路在何方——韩天峰

    PHP 从诞生到现在已经有20多年历史,从Web时代兴起到移动互联网退潮,互联网领域各种编程语言和技术层出不穷, Node.js . GO . Python 不断地在挑战 PHP 的地位.这些技术的推 ...

  3. Java基础学习笔记九 Java基础语法之this和super

    构造方法 我们对封装已经有了基本的了解,接下来我们来看一个新的问题,依然以Person为例,由于Person中的属性都被private了,外界无法直接访问属性,必须对外提供相应的set和get方法.当 ...

  4. 巨人大哥谈Java中的Synchronized关键字用法

    巨人大哥谈Java中的Synchronized关键字用法 认识synchronized 对于写多线程程序的人来说,经常碰到的就是并发问题,对于容易出现并发问题的地方价格synchronized基本上就 ...

  5. 简单hdfs相关操作命令

    HDFS常用操作命令 启动hdfs #start-all.sh 查看hdfs的配置文件 #cat hdfs-site.sh #hadoop fs -put /soft/jdk / #HDFS上传文件命 ...

  6. 事后诸葛亮分析——Beta版本

    事后诸葛亮分析 请两个小组在Deadline之前,召开事后诸葛亮会议,发布一篇事后分析报告. 软件工程课的目的,主要是让大家通过做项目,学到软件工程的知识,而不是低水平重复. 软件=程序+软件工程,软 ...

  7. 第1次作业:我与我的IT梦

    第一部分:结缘计算机 1.1最美的风景,一直在路上 说实话以前没有想过自己将学习计算机这个专业,在大二之前,我还是教师教育学院的一名师范生,机缘巧合,赶上了学校允许师范专业的同学转到非师范专业,于是, ...

  8. Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  9. Tomcat 8项目无法启动,无报错

    作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs Tomcat 8启动很慢,且日志上无任何错误,在日志中查看到如下信息: Log4j:[2015-10-29 ...

  10. JAVA_SE基础——编码规范&代码编写规则

    这次我来给大家说明下编码规范&代码编写规则  ↓ 编码规范可以帮助程序员在编程时注意一些细节问题,提高程序的可读性,让程序员能够尽快地理解新的代码,并帮助大家编写出规范的利于维护的Java代码 ...