Numpy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器,是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。

创建数组最简单的方法就是array函数,它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组。

以一个列表为例:

 In [2]: import numpy as np

 In [3]: simple = [1,2.3,4,5]

 In [4]: arr = np.array(simple)

 In [5]: arr
Out[5]: array([ 1. , 2.3, 4. , 5. ])

嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组:

 In [6]: simple1 = [[1,2,3,4],[5,6,7,8]]

 In [7]: arr1 = np.array(simple1)

 In [8]: arr1
Out[8]:
array([[1, 2, 3, 4],
[5, 6, 7, 8]]) In [9]: arr1.ndim 获得数组的维数
Out[9]: 2 In [10]: arr1.shape
Out[10]: (2, 4)

除非显示说明,np.array会尝试为新建的数组推断出一个较为合适的数据类型,数据类型保存在一个特殊的dtype对象中。

 In [12]: arr.dtype
Out[12]: dtype('float64') In [13]: arr1.dtype
Out[13]: dtype('int64')

除了np.array之外,还有一些函数也可以新建数组。比如zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元祖即可。

 In [14]: np.zeros(10)
Out[14]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) In [15]: np.ones(10)
Out[15]: array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) In [16]: np.empty((2,3))
Out[16]:
array([[ 0.00000000e+000, 8.20622089e-317, 4.65914971e-317],
[ 6.90846568e-310, 6.90847131e-310, 1.25836781e-316]])

arange是Python内置函数range的数组版

 In [17]: np.arange(10)
Out[17]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

数组创建函数

函数 说明
array 将输入数据(列表、元祖、数组或其他序列类型)转换为ndarray
asarray  将输入转换为ndarray,如果输入本身就是一个ndarray就不进行复制
arange 类似于内置的range,但返回的是一个ndarray而不是列表
ones、ones_like 根据指定的形状和dtype创建一个全1数组。ones_like以另一个数组为参数,并根据其形状和dtype创建一个全1数组
zeros、zeros_like 类似于ones和ones_like,只不过产生的是全0数组而已
empty、empty_like 创建新数组,只分配内存空间但不填充任何值
eye、identity     创建一个正方的NxN单位矩阵(对角线为1,其余为0)

创建ndarray的更多相关文章

  1. numpy 基于数值范围创建ndarray()

    基于数值范围创建函数创建ndarray 1 numpy.arange arange([start=0,] stop[, step=1,][, dtype=None]) >>> np. ...

  2. numpy 基于现有数据创建ndarray(from existing data)

    1 numpy.array array(object[, dtype=None, copy=True, order='K', subok=False, ndmin=0]) 2 numpy.asarra ...

  3. ndarray 数组的创建和变换

    ndarray数组的创建方法 1.从python中的列表,元组等类型创建ndarray数组 x = np.array(list/tuple) x = np.array(list/tuple,dtype ...

  4. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  5. 创建naarray(1)

    创建ndarray Numpy创建ndarray的方法比较够用,几乎也就是矩阵运算的常用的方法. 约定: import numpy as np 常用的创建ndarray的函数有:np.array, n ...

  6. NumPy 超详细教程(3):ndarray 的内部机理及高级迭代

    系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 ndarray 对象的内部机理 ...

  7. 使用MXNet的NDArray来处理数据

    NDArray.ipynb NDArray介绍 机器学习处理的对象是数据,数据一般是由外部传感器(sensors)采集,经过数字化后存储在计算机中,可能是文本.声音,图片.视频等不同形式. 这些数字化 ...

  8. Python3NumPy——ndarray对象

    Python3NumPy——ndarray对象 1.前沿 推荐导入语法:import numpy as np NumPy中使用ndarray对象表示数组,ndarray是NumPy库的核心对象 2.创 ...

  9. NumPy 从已有的数组创建数组

    NumPy 从已有的数组创建数组 本章节我们将学习如何从已有的数组创建数组. numpy.asarray numpy.asarray 类似 numpy.array,但 numpy.asarray 只有 ...

随机推荐

  1. Mahout系列之----kmeans 聚类

    Kmeans是最经典的聚类算法之一,它的优美简单.快速高效被广泛使用. Kmeans算法描述 输入:簇的数目k:包含n个对象的数据集D. 输出:k个簇的集合. 方法: 从D中任意选择k个对象作为初始簇 ...

  2. 【一天一道LeetCode】#23. Merge k Sorted Lists

    一天一道LeetCode系列 (一)题目 Merge k sorted linked lists and return it as one sorted list. Analyze and descr ...

  3. hadoop学习视频

    杨尚川的视频 http://www.tudou.com/plcover/EvJCo2zl9hQ/ 酷6视频 http://v.ku6.com/show/8PkgqGcarHKndyP3rl_pUw.. ...

  4. iOS8 UILocalNotification 增加启动授权

    猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/46810357 ...

  5. Media Player Classic - HC 源代码分析 4:核心类 (CMainFrame)(3)

    ===================================================== Media Player Classic - HC 源代码分析系列文章列表: Media P ...

  6. BT币(金融有风险,投资需谨慎)哥的失败投资

    谁都知道bt币是一个旁氏骗局, 而进去的人,就必须保证自己不赔钱,所以只能随着大潮往前走,谁也不能让它跌 压垮骆驼的最后一根稻草, 还是幕后有个 推手, 在炒作 BT币, 事实上,作为新的投资项目,B ...

  7. 熊猫猪新系统测试之四:Ubuntu 14.04

    目前猫猪在办公室一般用的就是乌班图系统,一方面原因是老本本性能跑不起来Windows,更重要的是本猫觉得Linux系统更开放些.况且现在用的也比较熟了,完全可以脱离Windows鸟!这一系列4篇新系统 ...

  8. 《深入理解JAVA虚拟机》笔记1

    java程序运行时的内存空间,按照虚拟机规范有下面几项: )程序计数器 指示下条命令执行地址.当然是线程私有,不然线程怎么能并行的起来. 不重要,占内存很小,忽略不计. )方法区 这个名字很让我迷惑. ...

  9. PBCS项目总结

    PBCS项目已经成功地Product,终于可以缓解一下紧张的心情,最近连续四五个月紧张地工作,头都要大了.如今比较清闲,是时候总结一下整个项目了.(古人云:成功在于总结嘛) 整个项目是二个人开发的,由 ...

  10. 全面解读Java NIO工作原理(2)

    全面解读Java NIO工作原理(2) 2011-12-14 10:31 Rollen Holt Rollen Holt的博客 我要评论(0) 字号:T | T JDK 1.4 中引入的新输入输出 ( ...