BloomFilter——大规模数据处理利器
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。
一、实例
为了说明Bloom Filter存在的重要意义,举一个实例:
假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
1. 将访问过的URL保存到数据库。
2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。
二、Bloom Filter的算法
废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。
Bloom Filter算法如下:
创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。
(1) 加入字符串过程
下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。
(2)检查字符串是否存在的过程
下面是检查字符串str是否被BitSet记录过的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。
若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)
但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。
(3)删除字符串过程
字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。
三、Bloom Filter参数选择
(1)哈希函数选择
哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
(2)Bit数组大小选择
哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。
同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。
四、Bloom Filter实现代码
下面给出一个简单的Bloom Filter的Java实现代码:
import java.util.BitSet;
publicclass BloomFilter
{
/* BitSet初始分配2^24个bit */
privatestaticfinalint DEFAULT_SIZE =1<<25;
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 5, 7, 11, 13, 31, 37, 61 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func =new SimpleHash[seeds.length];
public BloomFilter()
{
for (int i =0; i < seeds.length; i++)
{
func[i] =new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将字符串标记到bits中
publicvoid add(String value)
{
for (SimpleHash f : func)
{
bits.set(f.hash(value), true);
}
}
//判断字符串是否已经被bits标记
publicboolean contains(String value)
{
if (value ==null)
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func)
{
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/* 哈希函数类 */
publicstaticclass SimpleHash
{
privateint cap;
privateint seed;
public SimpleHash(int cap, int seed)
{
this.cap = cap;
this.seed = seed;
}
//hash函数,采用简单的加权和hash
publicint hash(String value)
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++)
{
result = seed * result + value.charAt(i);
}
return (cap -1) & result;
}
}
}
BloomFilter——大规模数据处理利器的更多相关文章
- BloomFilter–大规模数据处理利器(转)
BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求1 ...
- BloomFilter–大规模数据处理利器
转自: http://www.dbafree.net/?p=36 BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法. ...
- BloomFilter ——大规模数据处理利器
BloomFilter——大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求 ...
- [转]BloomFilter——大规模数据处理利器
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一. 实例 为了说明Bl ...
- BloomFilter——大规模数据处理利器(爬虫判重)
http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快 ...
- BloomFilter——大规模数据处理利器[转]
原文链接:原文 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合. 一. 实 ...
- 微软开源大规模数据处理项目 Data Accelerator
微软开源了一个原为内部使用的大规模数据处理项目 Data Accelerator.自 2017 年开发以来,该项目已经大规模应用在各种微软产品工作管道上. 据微软官方开源博客介绍,Data Accel ...
- arcpy模块下的并行计算与大规模数据处理
一个多星期的时间,忍着胃痛一直在做GIS 540: Spatial Programming的课程项目,导致其他方面均毫无进展,可惜可惜.在这个过程当中临时抱佛脚学习了很多Python相关的其他内容,并 ...
- 大规模数据处理Apache Spark开发
大规模数据处理Apache Spark开发 Spark是用于大规模数据处理的统一分析引擎.它提供了Scala.Java.Python和R的高级api,以及一个支持用于数据分析的通用计算图的优化引擎.它 ...
随机推荐
- SQL 是一门美丽的语言 她来自艺术
有一种语言可以从诞生一直活跃到现在,有一个梦想从南四楼蔓延到北五楼再走向世界,有一种坚持可以从懵懂年少成长为干练成熟,有一本书可以温暖心灵彼岸,与数据库抨击撞出火花,有一个系统足以让你忘 ...
- 属性动画基础之ValueAnimator
概述 属性动画是谷歌在android3.0(API level 11)时候给我们带来了属性动画,真正意义上带来了"动画",以前的帧动画也就4中效果的组合(旋转.淡入淡出.放大缩小. ...
- 如何在Eclipse CDT中编译含有多个main函数的项目
最近在杭电ACM上做题,使用的C++工具是Eclipse,但是Eclipse CDT不能同时存在多个main函数的文件,上网也搜了很多资料,但是按他们的步骤来,还是不能实现自己想要的效果.经过一下午的 ...
- Oracle 中Return 和exit的区别
在Oracle存储过程中,使用Return 时,如果执行到Return语句,会跳出整个语句(如果是循环,会跳出整个循环),将不再执行,也就是结束了整个存储过程. 下面就用一个例子来说明一下 ,这个存储 ...
- javascript语言扩展:可迭代对象(5)
文章1-4篇说的都是js中的可迭代对象,下面让我们看看ruby中的等价物. 不可否认,ruby中对于迭代器和生成器的语法都相当简洁:ruby从一开始就有一个简洁的基因,而js后来的不断扩充使得其有些语 ...
- javascript内置对象速查(一)
字符串对象 var str = new String("Hello World"); 可以调用其中的一些方法: str.length str.big 日期对象 var dt = n ...
- Course4-Python ftp/ssh
1. ftp Python 自带有模块支持ftp. 可以参看一下代码. #!/usr/bin/env python import sys import os import time import ge ...
- win8 JDK环境变量不生效
执行where java 看一下路径对不对,如果对的话就把system32下面的3个java相关的exe删了即可,如果路径不对就修改环境变量.
- JTA 原理分析
JTA 深度历险 - 原理与实现 在 J2EE 应用中,事务是一个不可或缺的组件模型,它保证了用户操作的 ACID(即原子.一致.隔离.持久)属性.对于只操作单一数据源的应用,可以通过本地资源接口实现 ...
- Selenium高级篇Web自动化测试框架
现在常用的是对象模型PO(Page Object), 从过去要知道具体的定位,返回使用现在只需要知道所在页面的名称即可访问页面对象即可看到该页面的元素 PageObject实现了对页面对象及方法的抽离 ...