动态规划——leetcode5、最长回文子串
1、题目描述:

2、解题方法:动态规划
动态规划解题步骤:
1、确定状态
- 最后一步:如果s[i,...,j]是回文子串,那么需要满足两个条件
① s[i] == s[j];
② s[i+1,...,j-1]是回文子串;
- 子问题:我们要验证s[i+1,...,j-1]是不是回文子串
- 用dp[i][j]来表示s[i,...,j]是不是回文子串
2、转移方程
dp[i][j] = (s[i] == s[j])&& dp[i+1][j-1]
3、初始条件和边界情况
初始条件:dp[i][i] == true;
边界条件:在s[i] == s[j]的条件下,j-i<=2或者j-i<3,即说明s[i,...,j]的长度为2或者是3时,不用检查是不是回文串。

4、计算顺序
以字符串s:babab为例,一列一列的进行填表,先升序填列,再升序填行。

3、代码:
public String longestPalindrome(String s) {
int len = s.length();
if(len < 2){
return s;
}
int maxLen = 1;
int start = 0;
char[] res = s.toCharArray();
boolean[][] dp = new boolean[len][len];
for(int i = 0; i < len; i++){
dp[i][i] = true;
}
for(int j = 1; j < len; j++){
for(int i = 0; i < j; i++){
if(res[i] == res[j]){
if(j - i < 3 || dp[i+1][j-1] == true){
dp[i][j] = true;
}
if( j-i+1 > maxLen && dp[i][j] == true){
maxLen = j-i+1;
start = i;
}
}
}
}
return s.substring(start,start + maxLen);
}
动态规划——leetcode5、最长回文子串的更多相关文章
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- LeetCode5 最长回文子串
最长回文子串 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab" ...
- [Swift]LeetCode5. 最长回文子串 | Longest Palindromic Substring
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- LeetCode5.最长回文子串 JavaScript
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &qu ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 【LeetCode】最长回文子串【动态规划或中心扩展】
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...
- Leetcode(5)-最长回文子串(包含动态规划以及Manacher算法)
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...
- [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)
最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...
- leetcode5 最长回文字符串 动态规划 Manacher法
dp 注意没有声明S不空,处理一下 o(n^2) class Solution { public: string longestPalindrome(string s) { if (s.empty() ...
- [译]最长回文子串(Longest Palindromic Substring) Part I
[译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...
随机推荐
- 2021.06.12【NOIP提高B组】模拟 总结
T1 题目大意:有 \(n\) 个点,到点 \(i\) 可以获得 \(A_i\) ,同时消耗 \(B_i\) 若当前价值小于 \(B_i\) 则不能到,问从 \(P\) 开始,任一点结束后的最大值. ...
- 互联网公司目标管理OKR和绩效考核的误区
最近看了一篇关于「谷歌放弃OKR,转向全新的GRAD系统」的文章,我转到了研发效能DevOps的微信群里,结果引起了大家热烈的讨论,正好我们也在使用 OKR,所以也来谈谈我的理解以及我们应用起来的实际 ...
- KALI2020忘记用户名和密码
时隔半年,打开kali发现忘记了自己精心研制的用户名密码......... 第一步 在开机的时候就按e键进入如下界面 第二步 用键盘上的上下箭头↑↓进行屏幕滚动,滑到最后一行发现修改目标 倒数第四行: ...
- BUUCTF-一叶障目
一叶障目 010editor打开没发现有什么异常,看分辨率尺寸觉得不对劲,修改了一下发现了flag 图片第二组前面四个是宽后面是高,修改第七位为05即可发现flag flag{66666}
- supervisor的安装与使用
Ubuntu安装使用supervisor 进程管理工具 安装 apt-get install supervisor 查看是否安装成功 pgrep supervisord # 返回进程号则成功 改配置文 ...
- SAP Web Dynpro-消息
在ABAP Workbench中,您还可以创建和显示包含Dynpro应用程序最终用户信息的消息. 这些消息显示在屏幕上. 这些是用户交互消息,显示有关Web Dynpro应用程序的重要信息. 为了向用 ...
- UiPath文本操作Set Text的介绍和使用
一.Set Text的介绍 向输入框/文本框写入文本的一种操作 二.Set Text在UiPath中的使用 1.打开设计器,在设计库中新建一个Sequence,为序列命名及设置Sequence存放的路 ...
- 实现一个Prometheus exporter
Prometheus 官方和社区提供了非常多的exporter,涵盖数据库.中间件.OS.存储.硬件设备等,具体可查看exporters.exporterhub.io,通过这些 exporter 基本 ...
- Collection集合概述和集合框架介绍avi
集合概述 在前面基础班我们已经学习过并使用过集合ArrayList<E> ,那么集合到底是什么呢?· ~集合︰集合是java中提供的一种容器,可以用来存储多个数据集合和数组既然都是容器,它 ...
- Unity3D学习笔记8——GPU实例化(3)
目录 1. 概述 2. 详论 2.1. 自动实例化 2.2. MaterialPropertyBlock 3. 参考 1. 概述 在前两篇文章<Unity3D学习笔记6--GPU实例化(1)&g ...