2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

https://www.luogu.com.cn/problem/P1848

题意:

当农夫约翰闲的没事干的时候,他喜欢坐下来看书。多年过去,他已经收集了 N 本书 (1 <= N <= 100,000), 他想造一个新的书架来装所有书。

每本书 i 都有宽度 W(i) 和高度 H(i)。书需要按顺序添加到一组书架上;比如说,第一层架子应该包含书籍1 ... k,第二层架子应该以第k + 1本书开始,以下如此。每层架子的总宽度最大为L(1≤L≤1,000,000,000)。每层的高度等于该层上最高的书的高度,并且整个书架的高度是所有层的高度的总和,因为它们都垂直堆叠。

请帮助农夫约翰计算整个书架的最小可能高度。

有N(1 <= N <= 100000)本书,每本书有一个宽度W(i),高度H(i),(1 <= H(i) <= 1,000,000; 1 <= W(i) <= L)。

现在有足够多的书架,书架宽度最多是L (1 <= L <= 1,000,000,000),把书按顺序(先放1,再放2.....)放入书架。某个书架的高度是该书架中所放的最高的书的高度。

将所有书放入书架后,求所有书架的高度和的最小值?

分析:

对于前 \(i\) 本书放在书架上需要的高度为 \(f_i\) 。

设 \(sum_i\) 为前 \(i\) 本书宽度 \(w_j(j\in j<=i)\) 之和,则

\[f_i=\min(f_{j-1}+\max(f_{j},f_{j+1},\cdots,f_i))\\
j\in sum_i-sum_{j-1}<=L
\]

对于第 \(i\) 本书,存在 \(pos_i\) 使得 \(pos_i\) 是 \(i\) 最左侧的一本书满足 \(h_{pos_i}>=h_i\) 。对于第 \(pos_i+1\) 本书到到第 \(i\) 本书之间最大值为 \(h_i\) 。

建一棵线段树,可区间修改(修改 \(pos_i+1\) 到 \(i\) 的值为 \(h_i\) )、区间查询(查询 \(j\) 到 \(i\) 之间 \(f_{j-1}+\max(f_{j},f_{j+1},\cdots,f_i)\) 最小值)、单点修改(对于每个点要初始化)。

初始化的时候对于每个点 \(i\) ,因为必须要满足 \(i\) 前所有点依旧满足条件,所以每个叶子结点的含义就是以 \(i\) 为分界点,\(f_{i-1}+\max(f_i,f_{i+1},\cdots,f_{要查询的点})\) ,而且每次更新的区间的值为 \(h_i\) ,这个值会不断覆盖以前更新过的值,但是保证最优因为被更新的区间的值都比 \(h_i\) 小,且不存在 \(j\) 满足 \(h_j>h_i\) 且 \(pos_i+1<=j<=i\) 。

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#define IOS ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std; #define int long long
typedef long long ll;
const ll inf=1e18;
const int N=1e5+10;
int n,L,h[N],w[N],pos[N],sum[N];
ll f[N],lazy[N<<2],val[N<<2],tot[N<<2];
stack<int>s; inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')w=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
s=s*10+ch-'0';
ch=getchar();
}
return s*w;
}
inline void update(int x){
tot[x]=min(tot[x<<1],tot[x<<1|1]);
val[x]=min(val[x<<1],val[x<<1|1]);
}
inline void pushdown(int x){
if(lazy[x]==inf)return ;
tot[x<<1]=val[x<<1]+lazy[x];
tot[x<<1|1]=val[x<<1|1]+lazy[x];
lazy[x<<1]=lazy[x<<1|1]=lazy[x];
lazy[x]=inf;
}
inline void build(int x,int l,int r){
tot[x]=val[x]=lazy[x]=inf;
if(l==r)return ;
int mid=(l+r)>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
}
inline void changeline(int x,int l,int r,int L,int R,int k){
if(l>R||r<L)return ;
if(l>=L&&r<=R)return (void)(tot[x]=val[x]+k,lazy[x]=k);
pushdown(x);
int mid=(l+r)>>1;
if(mid>=L)changeline(x<<1,l,mid,L,R,k);
if(R>mid)changeline(x<<1|1,mid+1,r,L,R,k);
update(x);
}
inline void changespot(int x,int l,int r,int k){
if(l==r)return (void)(tot[x]=inf,val[x]=f[l-1]);
pushdown(x);
int mid=(l+r)>>1;
if(k<=mid)changespot(x<<1,l,mid,k);
if(k>mid)changespot(x<<1|1,mid+1,r,k);
update(x);
}
inline ll query(int x,int l,int r,int L,int R){
if(l>R||r<L)return inf;
if(l>=L&&r<=R)return tot[x];
pushdown(x);
int mid=(l+r)>>1;
ll ans=inf;
if(L<=mid)ans=min(ans,query(x<<1,l,mid,L,R));
if(R>mid)ans=min(ans,query(x<<1|1,mid+1,r,L,R));
return ans;
} signed main(){
n=read();L=read();
for(int i=1;i<=n;i++)h[i]=read(),w[i]=read(),sum[i]=sum[i-1]+w[i];
s.push(1);
for(int i=2;i<=n;i++){
while(!s.empty()&&h[i]>h[s.top()])s.pop();
if(!s.empty())pos[i]=s.top();
s.push(i);
}
build(1,1,n);
for(int i=1;i<=n;i++){
changespot(1,1,n,i);
if(pos[i]<i)changeline(1,1,n,pos[i]+1,i,h[i]);
int Li=lower_bound(sum,sum+i+1,sum[i]-L)-sum;
int Ri=i;
if(Li<Ri)f[i]=query(1,1,n,Li+1,Ri);
}
cout<<f[n];
return 0;
}

2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)的更多相关文章

  1. 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)

    2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...

  2. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

  3. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  4. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  5. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  6. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  7. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  8. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  9. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

随机推荐

  1. (数据科学学习手札135)tenacity:Python中最强大的错误重试库

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在编写程序尤其是与网络请求相关的程序, ...

  2. [bzoj1791][ioi2008]Island 岛屿(基环树、树的直径)

    [bzoj1791][ioi2008]Island 岛屿(基环树.树的直径) bzoj luogu 题意可能会很绕 一句话:基环树的直径. 求直径: 对于环上每一个点记录其向它的子树最长路径为$dp_ ...

  3. 查找bug的一些经验总结

    项目开发中遇到的bug解决经验总结 今天在项目开发中遇到了两个很难解决的bug,我把我的思路记录下来,以供之后遇到bug时,提供一些思路: 编译通过,但总结"core dumped" ...

  4. seqlist template

    1 #include <iostream.h> 2 typedef int ElemType; 3 typedef struct{ 4 ElemType *elem; 5 int leng ...

  5. 不会DRF?源码都分析透了确定不来看?

    目录 不会DRF?源码都分析透了确定不来看? 快速使用DRF写出接口 序列化和反序列化 drf快速使用 views.py serializer.py urls.py 在settings的app中注册 ...

  6. 如何通过sql语句完成分页?

    oracle select rownum,bookId from [rownum是伪列名,bookId是列名] (select rownum row_id,bookId from xiaoWJ_boo ...

  7. 给定一个奇数n,比如n=3,生成1到n平方的数,如1到9,填入九宫格,使得横竖斜的和都相等。

    对于N阶幻方,从1开始把数字从小到大按以下规则依次写入: 一.在第一行中间一列写入1 二.依次向右上方写入2.3.4...... 三.如果某数字写在了表格的某个方向外面,那就把这个数字向相反方向移动N ...

  8. 利用 ps 怎么显示所有的进程? 怎么利用 ps 查看指定进 程的信息?

    ps -ef (system v 输出) ps -aux bsd 格式输出 ps -ef | grep pid

  9. Spring MVC 框架有什么用?

    Spring Web MVC 框架提供 模型-视图-控制器 架构和随时可用的组件,用于开 发灵活且松散耦合的 Web 应用程序.MVC 模式有助于分离应用程序的不同方 面,如输入逻辑,业务逻辑和 UI ...

  10. centos 7环境下安装部署zookeeper

    近一直在看zookeeper的知识,有所收获,打算写些一些关于zookeeper的博客,也当做是自己的复习和笔记. 在上一篇 博客中简单地介绍了centos 7 下如何安装jdk,这一篇将介绍如何在c ...