题目链接

题目

题目描述

现有一个传动系统,包含了N个组合齿轮和M个链条。每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y。

即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈。传动比为正表示若编号为u的齿轮顺时针转动,则编号为v的齿轮也顺时针转动。传动比为负表示若编号为u的齿轮顺时针转动,则编号为v的齿轮会逆时针转动。若不同链条的传动比不相容,则有些齿轮无法转动。我们希望知道,系统中的这N个组合齿轮能否同时转动。

输入描述

有多组数据,第一行给定整数T,表示总的数据组数,之后依次给出T组数据。

每一组数据的第一行给定整数N和M,表示齿轮总数和链条总数。

之后有M行,依次描述了每一个链条,其中每一行给定四个整数u,v,x和y,表示只考虑这一组联动关系的情况下,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈。

请注意,x为正整数,而y为非零整数,但是y有可能为负数。

T ≤ 32,N ≤ 1000,M ≤ 10000且x与y的绝对值均不超过100

输出描述

输出T行,对应每一组数据。首先应该输出标识这是第几组数据,参见样例输出。之后输出判定结果,如果N个组合齿轮可以同时正常运行,则输出Yes,否则输出No。

示例1

输入

2
3 3
1 2 3 5
2 3 5 -7
1 3 3 -7
3 3
1 2 3 5
2 3 5 -7
1 3 3 7

输出

Case #1: Yes
Case #2: No

题解

方法一

知识点:并查集。

用带权并查集维护齿轮之间的关系,用权值表示根节点转一圈,这个节点转的圈数。

路径压缩,将父节点到根节点的权值乘以自己的权值。

集合合并,对于节点 \(x\) 和 \(y\) 以及其根节点 \(rx\) 和 \(ry\) ,将 \(rx\) 合并到 \(ry\) 需要得到 \(rx\) 的新权值,即得到 \(rx\) 和 \(ry\) 的传动比,有:

\[w_{rx}' = \frac{1}{w_{x}} \cdot \frac{x}{y} \cdot \frac{w_{y}}{1} \cdot 1
\]

即四个齿轮的三个传动比相乘得到 \(rx\) 和 \(ry\) 的传动比再将 \(ry\) 圈数设为 \(1\) ,于是 \(w_{rx}\) 就等于 \(rx\) 与 \(ry\) 的传动比乘以 \(ry\) 的圈数 \(1\) 。

如果新加关系的两个点已经在一个关系集合中,那就检验是否合法:

\[\frac{w_{x}}{w_{y}} = \frac{x}{y}
\]

两者传动比是否相等,相等则合法。

注意精度问题,相等用小于误差表示。

时间复杂度 \(O(n + m\log n)\)

空间复杂度 \(O(n)\)

方法二

知识点:DFS,图论。

和并查集思路差不多,但建图时要建无向图,因为需要直到可能遍历时走的是反向的。给起点权值赋为 \(1\) ,其他节点根据传动比赋值,上一个节点乘以这个方向的传动比的倒数的结果即是这个点实际转多少圈。

如果遇到遍历到一个访问过的节点,那就判断实际权值和目前算出来的权值是否相等。

时间复杂度 \(O(n+m)\)

空间复杂度 \(O(n+m)\)

代码

方法一

#include <bits/stdc++.h>
#define ll long long using namespace std; int n, m;
int fa[10007];
double w[10007]; int find(int x) {
if (fa[x] == x) return x;
int pre = fa[x];
fa[x] = find(fa[x]);
w[x] *= w[pre];
return fa[x];
} bool merge(int x, int y, double r) {
int rx = find(x);
int ry = find(y);
if (rx == ry)
return abs(w[x] / w[y] - r) < 1e-6;
fa[rx] = ry;
w[rx] = 1 / w[x] * r * w[y];
return true;
} bool solve() {
cin >> n >> m;
for (int i = 1;i <= n;i++) fa[i] = i, w[i] = 1;
bool flag = true;
for (int i = 0;i < m;i++) {
int u, v;
double x, y;
cin >> u >> v >> x >> y;
if (!flag) continue;
flag &= merge(u, v, x / y);
}
return flag;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++) {
cout << "Case #" << i << ": ";
if (!solve()) cout << "No" << '\n';
else cout << "Yes" << '\n';
}
return 0;
}

方法二

#include <bits/stdc++.h>
#define ll long long using namespace std; int n, m;
struct edge {
int to, nxt;
double w;
}e[10007 << 1];
int h[1007], cnt;
double vis[1007]; void add(int u, int v, double w) {
e[cnt].to = v;
e[cnt].w = w;
e[cnt].nxt = h[u];
h[u] = cnt++;
} bool dfs(int u) {
for (int i = h[u];~i;i = e[i].nxt) {
int v = e[i].to;
if (vis[v]) {
if (abs(vis[v] - vis[u] / e[i].w) > 1e-6) return false;
}
else {
vis[v] = vis[u] / e[i].w;
if (!dfs(v)) return false;
}
}
return true;
} bool solve() {
cin >> n >> m;
for (int i = 1;i <= n;i++) h[i] = -1, vis[i] = 0;
cnt = 0;
for (int i = 0;i < m;i++) {
int u, v;
double x, y;
cin >> u >> v >> x >> y;
add(u, v, x / y);
add(v, u, y / x);
}
vis[1] = 1;
return dfs(1);
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
for (int i = 1;i <= t;i++) {
cout << "Case #" << i << ": ";
if (!solve()) cout << "No" << '\n';
else cout << "Yes" << '\n';
}
return 0;
}

NC20583 [SDOI2016]齿轮的更多相关文章

  1. [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 613  Solved: 324 [Submit][Status ...

  2. BZOJ 4602: [Sdoi2016]齿轮 dfs

    4602: [Sdoi2016]齿轮 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4602 Description 现有一个传动系统,包 ...

  3. BZOJ4602 Sdoi2016 齿轮 【带权并查集】*

    BZOJ4602 Sdoi2016 齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组 ...

  4. bzoj 4602: [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合 ...

  5. BZOJ4602:[SDOI2016]齿轮(并查集)

    Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v ...

  6. 【bzoj4602】[Sdoi2016]齿轮 BFS

    题目描述 给出一张n个点m条边的有向图,每条边 (u,v,x,y) 描述了 u 的点权乘 x 等于 v 的点权乘 y (点权可以为负).问:是否存在满足条件的图. 输入 有多组数据,第一行给定整数T, ...

  7. BZOJ4602 SDOI2016齿轮(搜索)

    dfs一遍给每个齿轮随便标个值看是否矛盾就行了. #include<iostream> #include<cstdio> #include<cmath> #incl ...

  8. bzoj4602 [Sdoi2016]齿轮

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4602 [题解] 对于每组齿轮(u, v)连边,权值为y/x(反向边x/y) 那么直接dfs计 ...

  9. [bzoj4602][Sdoi2016]齿轮——dfs

    题目 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈.传 ...

随机推荐

  1. [AcWing 796] 子矩阵的和

    点击查看代码 #include<iostream> using namespace std; const int N = 1e3 + 10; int a[N][N], s[N][N]; i ...

  2. Ubuntu环境Docker+K8s+Dashboard的安装配置(无坑亲测)

    安装之前的准备: 安装docker 使用国内 daocloud 一键安装命令: curl -sSL https://get.daocloud.io/docker | sh 直接从dockerhub下载 ...

  3. SQL注入的几种类型

    SQL注入就是: 将构造SQL语句来插入到web提交的数据之中,让其返回数据时运行自己构造的恶意SQL语句. SQL注入构造恶意SQL语句的方法有: 构造堆叠,构造闭合,构造报错,构造时间差,等等 S ...

  4. bean的自动装配,使用注解开发,使用java的方式配置Spring

    bean的自动装配 自动装配是Spring满足bean依赖一种方式! Spring会在上下文中自动寻找,并自动给bean装配属性! 在Spring中有三种装配的方式 在xml中显示的配置 在java中 ...

  5. iOS全埋点解决方案-时间相关

    前言 ​ 我们使用"事件模型( Event 模型)"来描述用户的各种行为,事件模型包括事件( Event )和用户( User )两个核心实体.我们在描述用户行为时,往往只需要描述 ...

  6. Primal_Dual 原始对偶

    不是费用流都需要用 SPFA 吗. 众所周知,SPFA 去世了,然后网络流显然有负边.于是我们可以像 Johnson 全源最短路一样,给边加上势能,具体实现看我之前的 博客 啦. 然后对于每一次跑 D ...

  7. 「ABC 249Ex」Dye Color

    考虑停时定理. 初始势能为 \(\sum \Phi(cnt_i)\),末势能为 \(\Phi(n)\),我们希望构造这样一个 \(\Phi:Z\to Z\) 函数,使得每一次操作期望势能变化量为常数. ...

  8. [第18届 科大讯飞杯 J] 能到达吗

    能到达吗 题目链接:牛客5278 J 能到达吗 Description 给定一个 \(n\times m\) 的地图,地图的左上角为 \((1, 1)\) ,右下角为 \((n,m)\). 地图上有 ...

  9. 1. 时序练习(广告渠道vs销量预测)

    用散点图来看下sales销量与哪一维度更相关. 和目标销量的关系的话,那么这就是多元线性回归问题了. 上面把所有的200个数据集都用来训练了,现在把数据集拆分一下,分成训练集合测试集,再进行训练. 可 ...

  10. Spring cloud gateway 如何在路由时进行负载均衡

    本文为博主原创,转载请注明出处: 1.spring cloud gateway 配置路由 在网关模块的配置文件中配置路由: spring: cloud: gateway: routes: - id: ...