坡度坡向分析方法

坡度(slope)是地面特定区域高度变化比率的量度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。本文计算的为坡度百分比数据。如当角度为45度(弧度为π/4)时,高程增量等于水平增量,高程增量百分比为100%。

坡向(aspect)是指地形坡面的朝向。坡向用于识别出从每个像元到其相邻像元方向上值的变化率最大的下坡方向。坡向可以被视为坡度方向。坡向是一个角度,将按照顺时针方向进行测量,角度范围介于 0(正东)到 360(仍是正东)之间,即完整的圆。不具有下坡方向的平坦区域将赋值为-1(arcgis处理时为-1,其他可能为0)。

坡度、坡向计算一般采用拟合曲面法。拟合曲面一般采用二次曲面,即3×3的窗口,如下图所示。每个窗口的中心为一个高程点。图中的中心点e坡度和坡向计算过程如下。

参考链接:

[1]https://blog.csdn.net/zhouxuguang236/article/details/40017219

[2]https://blog.csdn.net/weixin_45561357/article/details/106677574

[3]https://www.cnblogs.com/gispathfinder/p/5790469.html

注意:DEM的空间坐标系一定要为投影坐标系

ArcGIS坡度坡向分析

打开DEM数据

坡度分析

坡度结果

坡向分析

坡向结果

python-gdal坡度坡向分析

from osgeo import gdal

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"

# 获取DEM信息
infoDEM = gdal.Info(demfile)

# 计算坡度
slopfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_gdal_Slope.tif"
slope = gdal.DEMProcessing(slopfile, demfile, "slope", format='GTiff', slopeFormat="percent", zeroForFlat=1, computeEdges=True)

# 计算坡向
aspectfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_gdal_Aspect.tif"
b = gdal.DEMProcessing(aspectfile, demfile, "aspect", format='GTiff', trigonometric=0, zeroForFlat=1, computeEdges=True)

坡度结果

坡向结果

python坡度坡向分析

import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"
slopefile = r"D:\微信公众号\坡度坡向\N40E117_Albers_python_Slope.tif"

#读取DEM数据
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 将无效值或背景值临近像元填充
if np.sum(mask) > 0:
   ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
   data = data[tuple(ind)]

# 计算坡度
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
s_data = np.full((rows, cols), -999, dtype=np.float32)
s_data[1:-1, 1:-1] = (np.arctan(np.sqrt((np.power(x, 2) + np.power(y, 2)))))
s_data[1:-1, 1:-1] = np.abs(np.tan(s_data[1:-1, 1:-1])) * 100
s_mask = s_data==-999
# 边缘填充
if np.sum(s_mask) > 0:
   ind = nd.distance_transform_edt(s_mask, return_distances=False, return_indices=True)
   s_data = s_data[tuple(ind)]
# 掩膜
s_data[dem_data==nodata] = -999
# 写出结果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(slopefile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(s_data)
outband.SetNoDataValue(-999)

坡度结果

import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"
aspectfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_python_Aspect.tif"

#读取DEM数据
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 将无效值或背景值临近像元填充
if np.sum(mask) > 0:
   ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
   data = data[tuple(ind)]

# 计算坡向
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
a_data = np.full((rows, cols), -999, dtype=np.float32)
a_data[1:-1, 1:-1] = np.arctan2(y, -1 * x) * 57.29578
a_data_ = deepcopy(a_data[1:-1, 1:-1])
a_data[1:-1, 1:-1][a_data_ < 0] = 90 - a_data[1:-1, 1:-1][a_data_ < 0]
a_data[1:-1, 1:-1][a_data_ >90] = 450 - a_data[1:-1, 1:-1][a_data_ > 90]
a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)] = 90 - a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)]
a_data[1:-1, 1:-1][(x==0.)& (y==0.)] = -1
a_data[1:-1, 1:-1][(x==0.)& (y>0.)] = 0
a_data[1:-1, 1:-1][(x==0.)& (y<0.)] = 180
a_data[1:-1, 1:-1][(x>0.)& (y==0.)] = 90
a_data[1:-1, 1:-1][(x<0.)& (y==0.)] = 270.

# 边缘填充
a_mask = a_data==-999
if np.sum(a_mask) > 0:
   ind = nd.distance_transform_edt(a_mask, return_distances=False, return_indices=True)
   a_data = a_data[tuple(ind)]

# 掩膜
a_data[dem_data==nodata] = -999
# 写出结果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(aspectfile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(a_data)
outband.SetNoDataValue(-999)

坡向结果

测试数据:

链接:https://pan.baidu.com/s/1PODbTJn1JOqOA4qeaJq4Gg

提取码:l3fw

欢迎关注个人wx_gzh: 小Rser

 

基于DEM的坡度坡向分析的更多相关文章

  1. IDL 实现求算 DEM 坡度坡向

    关于坡度坡向的定义,请Google之. 源码: IDL 源码PRO ASPECT_SLOPE,DEM,ASPECT = ASPECT,SLOPE=SLOPE,PIXELSIZE = PIXELSIZE ...

  2. 基于虎书实现LALR(1)分析并生成GLSL编译器前端代码(C#)

    基于虎书实现LALR(1)分析并生成GLSL编译器前端代码(C#) 为了完美解析GLSL源码,获取其中的信息(都有哪些in/out/uniform等),我决定做个GLSL编译器的前端(以后简称编译器或 ...

  3. 实战录 | 基于openflow协议的抓包分析

    <实战录>导语 云端卫士<实战录>栏目定期会向粉丝朋友们分享一些在开发运维中的经验和技巧,希望对于关注我们的朋友有所裨益.本期分享人为云端卫士安全SDN工程师宋飞虎,将带来基于 ...

  4. 基于byte[]的HTTP协议头分析代码

    smark 专注于高并发网络和大型网站架规划设计,提供.NET平台下高吞吐的网络通讯应用技术咨询和支持 基于byte[]的HTTP协议头分析代码 最近需要为组件实现一个HTTP的扩展包,所以简单地实现 ...

  5. 语法设计——基于LL(1)文法的预测分析表法

    实验二.语法设计--基于LL(1)文法的预测分析表法 一.实验目的 通过实验教学,加深学生对所学的关于编译的理论知识的理解,增强学生对所学知识的综合应用能力,并通过实践达到对所学的知识进行验证.通过对 ...

  6. 基于335X的UBOOT网口驱动分析

    基于335X的UBOOT网口驱动分析 一.软硬件平台资料 1.  开发板:创龙AM3359核心板,网口采用RMII形式 2.  UBOOT版本:U-Boot-2016.05,采用FDT和DM. 参考链 ...

  7. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  8. 分享一个基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具

    soar-web 基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具,支持 soar 配置的添加.修改.复制,多配置切换,配置的导出.导入与导入功能. 环境需求 python3.xF ...

  9. 基于UML的毕业设计管理系统的分析与设计

    基于UML的毕业设计管理系统的分析与设计 <本段与标题无关,自行略过 最近各种忙,天气不错,导师心情不错:“我们要写一个关于UML的专著”,一句话:“一个完整的系统贯穿整个UML的知识”:我:“ ...

随机推荐

  1. 学习openstack(五)

    OpenStackOpenStack介绍OpenStack是一种免费的开源平台,帮助服务提供商实现类似于亚马逊EC2和S3的基础设施服务.OpenStack当前有三个核心项目:计算(Nova),对象存 ...

  2. 排序 | 冒泡排序的优化与qsort快速排序

    冒泡排序 冒泡排序 Bubble_Sort,是极为简单的一种排序算法.虽然效率差一点,但好在具有结构简单,容易理解,易于操作等优点.冒泡排序就是把小的元素往前调或者把大的元素往后调.在相邻的两个元素间 ...

  3. MOS管工作原理精讲

  4. HTML5与HTML4区别简介

    移动互联网的快速发展,尤其是4G时代已经来临,加上微软在Windows 10中搭载了新的浏览器Edge取代了IE的地位,所以现在很多网站都开始抛弃IE朝着HTML5发展,PC端在不同浏览器之间的兼容性 ...

  5. 使用 Blueprint 要注意 render_template 函数

    此文章主要是为了记录在使用 Flask 的过程中遇到的问题.本章主要讨论 render_template 函数的问题. 使用 Flask 的同学都应该知道,项目中的 url 和视图函数是在字典里一一对 ...

  6. 使用Egret插件压缩代码包体积,减少请求数量的实战教程

    在白鹭引擎发布了5.2.7版本中新增加了命令行,增加自动合图插件TextureMergerPlugin功能.今天,我们以一个EUI案例来展示自动合图插件的具体使用方法和注意事项. 此外,我们在本文还融 ...

  7. idea 启动微服务 设置 run dashboard

    微服务如果很多,启动时如果在run窗口,会不是很方便,所以idea中配置了rundashboard,有时不自动出现时,需要进行配置: 配置操作如下: 我的idea版本2020.2 1.在父工程的.id ...

  8. 将项目导入eclipse中出现的jsp页面报错

    图片摘自百度经验,实在是每次都会忘了步骤,每次都得重新百度,所以索性自己总结到博客中,下次如果还记不住就直接从博客中看.原谅我实在学渣,呜呜~~~~(>_<)~~~~

  9. window.location.href用法与a标签的比较

    1.在使用这两种方法进行页面的跳转时,这两种方法都能够有效的实现该功能 但是其原理不尽相同 第一:window.location.href()方法必须书写在js中 <html> <h ...

  10. Docker-操作容器1

    ->点击该链接:Linux(Centos7)安装Docker<- 前言 步骤: 软件镜像->运行镜像->产生一个容器 这就类似于我们在pc端下载微信时需要启动wechat.ex ...