坡度坡向分析方法

坡度(slope)是地面特定区域高度变化比率的量度。坡度的表示方法有百分比法、度数法、密位法和分数法四种,其中以百分比法和度数法较为常用。本文计算的为坡度百分比数据。如当角度为45度(弧度为π/4)时,高程增量等于水平增量,高程增量百分比为100%。

坡向(aspect)是指地形坡面的朝向。坡向用于识别出从每个像元到其相邻像元方向上值的变化率最大的下坡方向。坡向可以被视为坡度方向。坡向是一个角度,将按照顺时针方向进行测量,角度范围介于 0(正东)到 360(仍是正东)之间,即完整的圆。不具有下坡方向的平坦区域将赋值为-1(arcgis处理时为-1,其他可能为0)。

坡度、坡向计算一般采用拟合曲面法。拟合曲面一般采用二次曲面,即3×3的窗口,如下图所示。每个窗口的中心为一个高程点。图中的中心点e坡度和坡向计算过程如下。

参考链接:

[1]https://blog.csdn.net/zhouxuguang236/article/details/40017219

[2]https://blog.csdn.net/weixin_45561357/article/details/106677574

[3]https://www.cnblogs.com/gispathfinder/p/5790469.html

注意:DEM的空间坐标系一定要为投影坐标系

ArcGIS坡度坡向分析

打开DEM数据

坡度分析

坡度结果

坡向分析

坡向结果

python-gdal坡度坡向分析

from osgeo import gdal

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"

# 获取DEM信息
infoDEM = gdal.Info(demfile)

# 计算坡度
slopfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_gdal_Slope.tif"
slope = gdal.DEMProcessing(slopfile, demfile, "slope", format='GTiff', slopeFormat="percent", zeroForFlat=1, computeEdges=True)

# 计算坡向
aspectfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_gdal_Aspect.tif"
b = gdal.DEMProcessing(aspectfile, demfile, "aspect", format='GTiff', trigonometric=0, zeroForFlat=1, computeEdges=True)

坡度结果

坡向结果

python坡度坡向分析

import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"
slopefile = r"D:\微信公众号\坡度坡向\N40E117_Albers_python_Slope.tif"

#读取DEM数据
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 将无效值或背景值临近像元填充
if np.sum(mask) > 0:
   ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
   data = data[tuple(ind)]

# 计算坡度
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
s_data = np.full((rows, cols), -999, dtype=np.float32)
s_data[1:-1, 1:-1] = (np.arctan(np.sqrt((np.power(x, 2) + np.power(y, 2)))))
s_data[1:-1, 1:-1] = np.abs(np.tan(s_data[1:-1, 1:-1])) * 100
s_mask = s_data==-999
# 边缘填充
if np.sum(s_mask) > 0:
   ind = nd.distance_transform_edt(s_mask, return_distances=False, return_indices=True)
   s_data = s_data[tuple(ind)]
# 掩膜
s_data[dem_data==nodata] = -999
# 写出结果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(slopefile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(s_data)
outband.SetNoDataValue(-999)

坡度结果

import gdal
import numpy as np
from scipy import ndimage as nd
from copy import deepcopy

demfile = r"D:\微信公众号\坡度坡向\N40E117_Albers.tif"
aspectfile = r"D:\微信公众号\坡度坡向\N40E117_Albers_python_Aspect.tif"

#读取DEM数据
ds = gdal.Open(demfile)
cols = ds.RasterXSize
rows = ds.RasterYSize
geo = ds.GetGeoTransform()
proj = ds.GetProjection()
dem_data = ds.ReadAsArray()
data = deepcopy(dem_data).astype(np.float32)
band = ds.GetRasterBand(1)
nodata = band.GetNoDataValue()
data[data == nodata] = np.nan
# data[data<-999]=np.nan
mask = np.isnan(data)
# 将无效值或背景值临近像元填充
if np.sum(mask) > 0:
   ind = nd.distance_transform_edt(mask, return_distances=False, return_indices=True)
   data = data[tuple(ind)]

# 计算坡向
xsize = np.abs(geo[1])
ysize = np.abs(geo[5])
x = ((data[:-2, 2:] - data[:-2, :-2]) + 2 * (data[1:-1, 2:] - data[1:-1, :-2]) + (data[2:, 2:] - data[2:, :-2])) / (8 * xsize)
y = ((data[2:, :-2] - data[:-2, :-2]) + 2 * (data[2:, 1:-1] - data[:-2, 1:-1]) + (data[2:, 2:] - data[:-2, 2:])) / (8 * ysize)
a_data = np.full((rows, cols), -999, dtype=np.float32)
a_data[1:-1, 1:-1] = np.arctan2(y, -1 * x) * 57.29578
a_data_ = deepcopy(a_data[1:-1, 1:-1])
a_data[1:-1, 1:-1][a_data_ < 0] = 90 - a_data[1:-1, 1:-1][a_data_ < 0]
a_data[1:-1, 1:-1][a_data_ >90] = 450 - a_data[1:-1, 1:-1][a_data_ > 90]
a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)] = 90 - a_data[1:-1, 1:-1][(a_data_ >= 0) & (a_data_ <= 90)]
a_data[1:-1, 1:-1][(x==0.)& (y==0.)] = -1
a_data[1:-1, 1:-1][(x==0.)& (y>0.)] = 0
a_data[1:-1, 1:-1][(x==0.)& (y<0.)] = 180
a_data[1:-1, 1:-1][(x>0.)& (y==0.)] = 90
a_data[1:-1, 1:-1][(x<0.)& (y==0.)] = 270.

# 边缘填充
a_mask = a_data==-999
if np.sum(a_mask) > 0:
   ind = nd.distance_transform_edt(a_mask, return_distances=False, return_indices=True)
   a_data = a_data[tuple(ind)]

# 掩膜
a_data[dem_data==nodata] = -999
# 写出结果
driver = gdal.GetDriverByName("gtiff")
outds = driver.Create(aspectfile, cols, rows, 1, gdal.GDT_Float32)
outds.SetGeoTransform(geo)
outds.SetProjection(proj)
outband = outds.GetRasterBand(1)
outband.WriteArray(a_data)
outband.SetNoDataValue(-999)

坡向结果

测试数据:

链接:https://pan.baidu.com/s/1PODbTJn1JOqOA4qeaJq4Gg

提取码:l3fw

欢迎关注个人wx_gzh: 小Rser

 

基于DEM的坡度坡向分析的更多相关文章

  1. IDL 实现求算 DEM 坡度坡向

    关于坡度坡向的定义,请Google之. 源码: IDL 源码PRO ASPECT_SLOPE,DEM,ASPECT = ASPECT,SLOPE=SLOPE,PIXELSIZE = PIXELSIZE ...

  2. 基于虎书实现LALR(1)分析并生成GLSL编译器前端代码(C#)

    基于虎书实现LALR(1)分析并生成GLSL编译器前端代码(C#) 为了完美解析GLSL源码,获取其中的信息(都有哪些in/out/uniform等),我决定做个GLSL编译器的前端(以后简称编译器或 ...

  3. 实战录 | 基于openflow协议的抓包分析

    <实战录>导语 云端卫士<实战录>栏目定期会向粉丝朋友们分享一些在开发运维中的经验和技巧,希望对于关注我们的朋友有所裨益.本期分享人为云端卫士安全SDN工程师宋飞虎,将带来基于 ...

  4. 基于byte[]的HTTP协议头分析代码

    smark 专注于高并发网络和大型网站架规划设计,提供.NET平台下高吞吐的网络通讯应用技术咨询和支持 基于byte[]的HTTP协议头分析代码 最近需要为组件实现一个HTTP的扩展包,所以简单地实现 ...

  5. 语法设计——基于LL(1)文法的预测分析表法

    实验二.语法设计--基于LL(1)文法的预测分析表法 一.实验目的 通过实验教学,加深学生对所学的关于编译的理论知识的理解,增强学生对所学知识的综合应用能力,并通过实践达到对所学的知识进行验证.通过对 ...

  6. 基于335X的UBOOT网口驱动分析

    基于335X的UBOOT网口驱动分析 一.软硬件平台资料 1.  开发板:创龙AM3359核心板,网口采用RMII形式 2.  UBOOT版本:U-Boot-2016.05,采用FDT和DM. 参考链 ...

  7. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  8. 分享一个基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具

    soar-web 基于小米 soar 的开源 sql 分析与优化的 WEB 图形化工具,支持 soar 配置的添加.修改.复制,多配置切换,配置的导出.导入与导入功能. 环境需求 python3.xF ...

  9. 基于UML的毕业设计管理系统的分析与设计

    基于UML的毕业设计管理系统的分析与设计 <本段与标题无关,自行略过 最近各种忙,天气不错,导师心情不错:“我们要写一个关于UML的专著”,一句话:“一个完整的系统贯穿整个UML的知识”:我:“ ...

随机推荐

  1. selenium 模块使用

    selenium 概念:基于浏览器自动化的一个模块,可以模拟浏览器行为 环境的安装:下载selenium模块 selenium和爬虫之间的关联是什么? 便捷的获取页面中动态加载的数据 requests ...

  2. jsp页面学习之"javascript:void(0)"的使用

    javascript:void(0) 仅仅表示一个死链接 如果是个# javascript:void(#),就会出现跳到顶部的情况,搜集了一下解决方法 1:<a href="####& ...

  3. 自动驾驶运动规划-Dubins曲线

    1.Simple Car模型 如下图所示,Simple Car模型是一个表达车辆运动的简易模型.Simple Car模型将车辆看做平面上的刚体运动,刚体的原点位于车辆后轮的中心:x轴沿着车辆主轴方向, ...

  4. Linux系统下ifconfig命令使用及结果分析

    Linux下网卡命名规律:eth0,eth1.第一块以太网卡,第二块.lo为环回接口,它的IP地址固定为127.0.0.1,掩码8位.它代表你的机器本身. 1.ifconfig是查看网卡的信息. if ...

  5. css两栏布局、圣杯布局、双飞翼布局

    最近几个月一直用vue在写手机端的项目,主要写业务逻辑,在js方面投入的时间和精力也比较多.这两天写页面明显感觉css布局方面的知识有不足,所以复习一下布局方法. 两栏布局 1.浮动 .box1 .l ...

  6. 你可以说出export export default || model.exports exports 的区别吗(一)

    一.前言: 用模块写代码,为什么要用模块来写代码:ES6之前,在js中定义的一切,都是共享一个全局作用域的,随着web应用变得复杂,这样做会引起如:命名冲突和安全问题.于是引入了模块. 二.清楚一个概 ...

  7. JavaScript 小技巧 数组去重

    const array = [1, 2, 3, 3, 5, 5, 1]; const uniqueArray = [...new Set(array)]; console.log(uniqueArra ...

  8. 数据库number(4,3)表示什么

    1 你看 number(4,3)是表示 这个数 一共有4位是有效位,后面的3 表示有3个是小数也就是这个数 只能是1.234,这样格式的 最大只能是9.999,2 number(3,4) 表示这个数 ...

  9. 解决vue-cli项目在运行时控制台出现 [WDS] Disconnected! 错误

    在项目运行时 控制台输入 npm run dev 后浏览器出现该项目页面,但是出现了[WDS] Disconnected!错误 虽然有时并不影响,但是作为一名合格的程序员 我们还是尽量将其修复,以免将 ...

  10. 学生管理系统 C++课设

    #include<stdio.h> #include<stdlib.h> #include<string.h> #include<iostream> u ...