Pytorch实战学习(一):用Pytorch实现线性回归
《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
P5--用Pytorch实现线性回归
建立模型四大步骤

一、Prepare dataset
mini-batch:x、y必须是矩阵

## Prepare Dataset:mini-batch, X、Y是3X1的Tensor
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
二、Design model
1、重点是构造计算图

##Design Model ##构造类,继承torch.nn.Module类
class LinearModel(torch.nn.Module):
## 构造函数,初始化对象
def __init__(self):
##super调用父类
super(LinearModel, self).__init__()
##构造对象,Linear Unite,包含两个Tensor:weight和bias,参数(1, 1)是w的维度
self.linear = torch.nn.Linear(1, 1) ## 构造函数,前馈运算
def forward(self, x):
## w*x+b
y_pred = self.linear(x)
return y_pred model = LinearModel()
2、设置w的维度,后一层的神经元数量 X 前一层神经元数量

三、Construct Loss and Optimizer
##Construct Loss and Optimizer ##损失函数,传入y和y_presd
criterion = torch.nn.MSELoss(size_average = False) ##优化器,model.parameters()找出模型所有的参数,Lr--学习率
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
1、损失函数

2、优化器

可用不同的优化器进行测试对比

四、Training cycle

## Training cycle for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss) ##梯度归零
optimizer.zero_grad()
##反向传播
loss.backward()
##更新
optimizer.step()
完整代码
import torch ## Prepare Dataset:mini-batch, X、Y是3X1的Tensor
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]]) ##Design Model ##构造类,继承torch.nn.Module类
class LinearModel(torch.nn.Module):
## 构造函数,初始化对象
def __init__(self):
##super调用父类
super(LinearModel, self).__init__()
##构造对象,Linear Unite,包含两个Tensor:weight和bias,参数(1, 1)是w的维度
self.linear = torch.nn.Linear(1, 1) ## 构造函数,前馈运算
def forward(self, x):
## w*x+b
y_pred = self.linear(x)
return y_pred model = LinearModel() ##Construct Loss and Optimizer ##损失函数,传入y和y_presd
criterion = torch.nn.MSELoss(size_average = False) ##优化器,model.parameters()找出模型所有的参数,Lr--学习率
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) ## Training cycle for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss) ##梯度归零
optimizer.zero_grad()
##反向传播
loss.backward()
##更新
optimizer.step() ## Outpue weigh and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item()) ## Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
运行结果
训练100次后,得到的 weight and bias,还有预测的y

Pytorch实战学习(一):用Pytorch实现线性回归的更多相关文章
- 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- 深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...
- 参考《深度学习之PyTorch实战计算机视觉》PDF
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- PyTorch 实战:计算 Wasserstein 距离
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...
- pytorch例子学习-DATA LOADING AND PROCESSING TUTORIAL
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUT ...
- pytorch的学习资源
安装:https://github.com/pytorch/pytorch 文档:http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial ...
- 【pytorch】学习笔记(三)-激励函数
[pytorch]学习笔记-激励函数 学习自:莫烦python 什么是激励函数 一句话概括 Activation: 就是让神经网络可以描述非线性问题的步骤, 是神经网络变得更强大 1.激活函数是用来加 ...
- 【pytorch】学习笔记(二)- Variable
[pytorch]学习笔记(二)- Variable 学习链接自莫烦python 什么是Variable Variable就好像一个篮子,里面装着鸡蛋(Torch 的 Tensor),里面的鸡蛋数不断 ...
随机推荐
- Mybatis Plus整合PageHelper分页的实现示例
1.依赖引入 <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pag ...
- CentOS7 RPM方式安装JDK
1.下载jdk rpm Java Downloads | Oracle 中国 https://www.oracle.com/cn/java/technologies/downloads/#jdk19- ...
- 高效、优雅的对象copy之MapStruct入门到精通,实战踩坑版
一.前言 大家在开发中,最让人头疼的就是:对象之间的拷贝,前端的VO和数据库的Entity不一致! 性能最好的就是手动set,主要是枯燥且无技术含量,不仅耗费大量时间而且很容易出错: 所以我们要成为优 ...
- MRS+LakeFormation:打造一站式湖仓,释放数据价值
摘要:华为LakeFormation是企业级的一站式湖仓构建服务. 本文分享自华为云社区<华为云MRS支持LakeFormation能力,打造一站式湖仓,释放数据价值]>,作者:break ...
- 毕设进度更新(真的不知道自己做到哪- - 备忘录性质)+3.19是mavan配置的常见问题
3.19 maven的配置 我也不知道我的cmd 输入mvn complie就是报错 也没办法下载 奇了怪了 检查了setting文件也没得- - 然后也没办法像老师一样直接导入tomcat的包 但是 ...
- Python 内置界面开发框架 Tkinter入门篇 丁
如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/X5cqennLrq7i1pzBAAqQ2w 本文大概 2562 个字,阅读需花 15 分钟 内 ...
- H3C MS4300V2配置mac地址与接口绑定
配置mac地址与接口绑定 例: <h3c>system-view //进入系统视图 [h3c]int g 1/0/45 //进入45接口 [h3c-GigabitEthernet1 ...
- NETAPP硬盘更换
netapp硬盘新增 一.找到坏盘,插上新盘# 1.登陆到想要点亮的硬盘相对应的控制器上,并进去高级模式. priv set advanced 2.利用disk show -v 查看想要点亮的硬盘名字 ...
- nvm管理node和npm
安装nvm 下载地址:https://github.com/coreybutler/nvm-windows/releases 下载前卸载调node,安装时注意记住所在路径,傻瓜式安装.安装后nvm - ...
- 代码随想录算法训练营day06 | leetcode 242、349 、202、1
基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...