Pytorch实战学习(一):用Pytorch实现线性回归
《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
P5--用Pytorch实现线性回归
建立模型四大步骤

一、Prepare dataset
mini-batch:x、y必须是矩阵

## Prepare Dataset:mini-batch, X、Y是3X1的Tensor
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
二、Design model
1、重点是构造计算图

##Design Model ##构造类,继承torch.nn.Module类
class LinearModel(torch.nn.Module):
## 构造函数,初始化对象
def __init__(self):
##super调用父类
super(LinearModel, self).__init__()
##构造对象,Linear Unite,包含两个Tensor:weight和bias,参数(1, 1)是w的维度
self.linear = torch.nn.Linear(1, 1) ## 构造函数,前馈运算
def forward(self, x):
## w*x+b
y_pred = self.linear(x)
return y_pred model = LinearModel()
2、设置w的维度,后一层的神经元数量 X 前一层神经元数量

三、Construct Loss and Optimizer
##Construct Loss and Optimizer ##损失函数,传入y和y_presd
criterion = torch.nn.MSELoss(size_average = False) ##优化器,model.parameters()找出模型所有的参数,Lr--学习率
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
1、损失函数

2、优化器

可用不同的优化器进行测试对比

四、Training cycle

## Training cycle for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss) ##梯度归零
optimizer.zero_grad()
##反向传播
loss.backward()
##更新
optimizer.step()
完整代码
import torch ## Prepare Dataset:mini-batch, X、Y是3X1的Tensor
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]]) ##Design Model ##构造类,继承torch.nn.Module类
class LinearModel(torch.nn.Module):
## 构造函数,初始化对象
def __init__(self):
##super调用父类
super(LinearModel, self).__init__()
##构造对象,Linear Unite,包含两个Tensor:weight和bias,参数(1, 1)是w的维度
self.linear = torch.nn.Linear(1, 1) ## 构造函数,前馈运算
def forward(self, x):
## w*x+b
y_pred = self.linear(x)
return y_pred model = LinearModel() ##Construct Loss and Optimizer ##损失函数,传入y和y_presd
criterion = torch.nn.MSELoss(size_average = False) ##优化器,model.parameters()找出模型所有的参数,Lr--学习率
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) ## Training cycle for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss) ##梯度归零
optimizer.zero_grad()
##反向传播
loss.backward()
##更新
optimizer.step() ## Outpue weigh and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item()) ## Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
运行结果
训练100次后,得到的 weight and bias,还有预测的y

Pytorch实战学习(一):用Pytorch实现线性回归的更多相关文章
- 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- 深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch ...
- 参考《深度学习之PyTorch实战计算机视觉》PDF
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- PyTorch 实战:计算 Wasserstein 距离
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...
- pytorch例子学习-DATA LOADING AND PROCESSING TUTORIAL
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUT ...
- pytorch的学习资源
安装:https://github.com/pytorch/pytorch 文档:http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial ...
- 【pytorch】学习笔记(三)-激励函数
[pytorch]学习笔记-激励函数 学习自:莫烦python 什么是激励函数 一句话概括 Activation: 就是让神经网络可以描述非线性问题的步骤, 是神经网络变得更强大 1.激活函数是用来加 ...
- 【pytorch】学习笔记(二)- Variable
[pytorch]学习笔记(二)- Variable 学习链接自莫烦python 什么是Variable Variable就好像一个篮子,里面装着鸡蛋(Torch 的 Tensor),里面的鸡蛋数不断 ...
随机推荐
- SpringBoot 三大开发工具,你都用过么?
本文已经收录到Github仓库,该仓库包含计算机基础.Java基础.多线程.JVM.数据库.Redis.Spring.Mybatis.SpringMVC.SpringBoot.分布式.微服务.设计模式 ...
- 爬虫Charles安装破解使用教程
转:https://blog.csdn.net/qq_27109535/article/details/125787745 1 下载安装程序及破解包 链接:https://pan.baidu.com/ ...
- P28_全局配置 - 常用的全局配置项以及小程序窗口的组成部分
全局配置文件及常用的配置项 pages 记录当前小程序所有页面的存放路径 window 全局设置小程序窗口的外观 tabBar 设置小程序底部的 tabBar 效果 style 是否启用新版的组件样式 ...
- Python学习常见问题及其解决方案(1)
1.ModuleNotFoundError: No module named 'urllib2' 解决方案: 1)https://blog.csdn.net/weixin_45598506/artic ...
- C++ 练习7 引用作为函数返回值
当引用作为函数的返回值时,可以直接将其当作赋值语句的左值使用 如:函数refValue(int& x)可以像 a=10 中的"a"来使用 1 #include <io ...
- 2.17 win32 按钮事件的处理
按钮的本质就是窗口 点击查看代码 void CreateButton(HWND hwnd) { HWND hwndPushButton; HWND hwndCheckBox; HWND hwndRad ...
- Vue-cli混入、elementUI的使用、vue-router、Vuex
目录 混入.elementUI的使用.vue-router.Vuex 一.Vue项目改成比较纯净的状态及props其他使用 1.Vue项目改成纯净的项目 2.props的其他使用 二.混入(mixin ...
- LG P2839 [国家集训队]middle
\(\text{Solution}\) 不考虑起点区间和终点区间的限制,求区间中位数 可以二分中位数,大于等于中位数的位置赋为 \(1\),小于的位置赋 \(-1\) 当区间和大于等于 \(0\) 时 ...
- ArcGIS for Android 地图图文查询
ArcGIS for Android 地图图文查询 1.前期项目准备 1.1. 创建新工程 新建一个空活动项目 选择语言.平台,修改命名等 1.2. 添加ArcGIS SDK build.gradle ...
- c++_成员函数回调
//--------------------------------------------------------------------------- #include <vcl.h> ...