CCPC2021 广州 K. Magus Night
CCPC2021 广州 K. Magus Night
题意
给定整数区间 \([1,m]\) ,从中可重复的选择 \(n\) 个数,形成一个数列 \(\{a_n\}\) 。问:所有满足 \(\gcd(a_1,...,a_n)\le q\) 并且 \(\text{lcm}(a_1,...,a_n)\ge p\) 的数列的乘积和。
题解
官方题解其实已经很明了了,我这里再做个翻译。题目要求的是 \(\gcd\le q\) 且 \(\text{lcm} \ge p\) 的所有数列的乘积和。根据 \(\gcd|\text{lcm}\) 这一性质可以枚举 \((\gcd,\text{lcm})\) 数对来计算,但此题的 \(\text{lcm}\) 会很大,无法直接枚举所有大于 \(p\) 的 \(\text{lcm}\) ,所以需要转换思路,大的枚举不完,但小的好枚举,于是我们做这么一个容斥:
\]
其中 \((a,b)\) 表示满足 \(a\) 和 \(b\) 条件下的所有数列的乘积和, \(S\) 代表全体数列的乘积和。
全体数列的乘积和可以这么表示:每一个数的取值范围都是 \([1,m]\) ,利用分配律,可知
\]
然后再求 \((\gcd>q)\) 。这是个经典问题,很容易由容斥算出来。
然后就是 \((\gcd\le q,\text{lcm}<p)\) 。考虑上述的分配律,我们也可以把满足 \(\gcd=g,\text{lcm}=l\) 的所有数列的乘积和表示成一些数乘积的和。考虑到唯一分解定理,我们使用素数来进行表示。对于两个数 \(a,b\) ,把他们写成唯一分解的形式:
b=p_1^{t_1}p_2^{t_2}...p_s^{t_s}\\
\gcd(a,b)=p_1^{\min(k_1,t_1)}p_2^{\min(k_2,t_2)}...p_s^{\min(k_s,t_s)}\\
\text{lcm}(a,b)=p_1^{\max(k_1,t_1)}p_2^{\max(k_2,t_2)}...p_s^{\max(k_s,t_s)}
\]
由此可知,一对 \(\gcd,\text{lcm}\) 便确定了素数幂次的上界和下界,利用上述的分配律计算贡献即可。计算的时候需要注意的是,上界和下界必须取到,可以考虑下面的容斥来进行计算:
设下界为 \(L\) ,上界为 \(R\) ,那么
\]
AC代码
这份代码没有优化,1887ms,过的非常危险。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long;
constexpr int N = 2e5+5, P=998244353;
ll f[N], mind[N];
ll qpow(ll a, ll b){
ll res=1;
for(;b;b>>=1,a=a*a%P)if(b&1)res=res*a%P;
return res;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("1.in", "r", stdin);
#endif // !ONLINE_JUDGE
cin.tie(nullptr)->ios::sync_with_stdio(false);
rep(i,2,N)if(!mind[i])for(int j=i;j<N;j+=i)mind[j]=i;
ll n,m,p,q; cin>>n>>m>>p>>q;
ll inv2=qpow(2,P-2);
ll ans=qpow((m*(m+1)%P*inv2)%P,n);
for(int i=m;i>q;i--){
ll cnt=m/i;
f[i]=qpow(i,n)*qpow((cnt*(cnt+1)%P*inv2%P),n)%P;
for(int j=i+i;j<=m;j+=i)f[i]=(f[i]-f[j]+P)%P;
ans=(ans-f[i]+P)%P;
}//cout<<ans<<endl;
rep(l,1,m+1){
f[l]=1;
for(int tmp=l,pr;tmp!=1;){
pr=mind[tmp];
ll x=0,y=1;
for(;tmp%pr==0;x=(x+y)%P,y=y*pr%P)tmp/=pr;
ll temp=(qpow(x+y,n)-qpow(x,n)-qpow(x+y-1,n)+qpow(x-1,n))%P;
f[l]=(f[l]*temp)%P;
}
}
rep(i,1,q+1)for(int j=i;j<p;j+=i)ans=(ans-qpow(i,n)*f[j/i]%P+P)%P;
cout<<ans;
return 0;
}
CCPC2021 广州 K. Magus Night的更多相关文章
- django模型操作
Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表
- hdu 5137 去掉一个点 使得最短路最大(2014广州现场赛 K题)
题意:从2~n-1这几个点中任意去掉一个点,使得从1到n的最短路径最大,如果任意去掉一个点1~n无通路输出Inf. Sample Input4 51 2 31 3 71 4 502 3 43 4 23 ...
- 笔试总结篇(一) : 广州X公司笔试
一.单选题: Ps : 当时由于去广州路上颠簸很困,导致刚做几分钟题目就睡了一觉.起来发现20分钟过去了.擦擦! 1. 假设磁盘文件foobar.txt 由 6个ASCII 码字符“foobar” 组 ...
- [深圳/广州]微软SQL技术沙龙分享会(MVP)
[深圳/广州] 新一期俱乐部活动报名开始,这次是广深地区SQL Server 技术沙龙分享会(MVP),SQL Server作为一个数据平台,不管是SQL Server 2017 on Linux 还 ...
- 广州.NET微软技术俱乐部微信群有用信息集锦(10) - 大量json数据压缩方案
这是广州.NET微软技术俱乐部微信群有用信息集锦系列的其中一篇文章. 刚才微信群里有人问:“对于大量json数据返回的时候,有用过什么压缩方案吗?” 大家都给与了回答和帮助.包括: 开启gzi ...
- spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析
今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验). 还是以SPSS教程为例: 假设:HO: 不同地区的儿童,身高分布是相同的 H1: 不 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- 【开源】专业K线绘制[K线主副图、趋势图、成交量、滚动、放大缩小、MACD、KDJ等)
这是一个iOS项目雅黑深邃的K线的绘制. 实现功能包括K线主副图.趋势图.成交量.滚动.放大缩小.MACD.KDJ,长按显示辅助线等功能 预览图 最后的最后,这是项目的开源地址:https://git ...
- 找到第k个最小元----快速选择
此算法借用快速排序算法. 这个快速选择算法主要利用递归调用,数组存储方式.包含3个文件,头文件QuickSelect.h,库函数QuickSelect.c,测试文件TestQuickSelect. 其 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
随机推荐
- jmeter做性能测试
一.线程与进程 一个软件/程序,是以进程的方式存在的,一个进程可含多个线程(一个软件可以做多个事情,就是基于线程而实现的) 二.并发的基本概念 并发: 并发用户数:同一时刻,服务器/接口接收到的用户量 ...
- 安装和配置Java开发环境JDK
我们通常软件开发的操作系统选择Windows,生产环境选择linux或windows Server.移动开发可能是安卓或IOS和鸿蒙系统等. Windows下一般选择的是64位的操作系统,一般建议CP ...
- 一文搞懂秒杀系统,欢迎参与开源,提交PR,提高竞争力。早日上岸,升职加薪。
前言 秒杀和高并发是面试的高频考点,也是我们做电商项目必知必会的场景.欢迎大家参与我们的开源项目,提交PR,提高竞争力.早日上岸,升职加薪. 知识点详解 秒杀系统架构图 秒杀流程图 秒杀系统设计 这篇 ...
- 【雅礼联考DAY01】数列
#include<cstdio> #include<map> using namespace std; typedef long long LL; const int N = ...
- 基于C++的OpenGL 02 之着色器
1. 概述 本文基于C++语言,描述OpenGL的着色器 环境搭建以及绘制流程可参考: 基于C++的OpenGL 01 之Hello Triangle - 当时明月在曾照彩云归 - 博客园 (cnbl ...
- java数据结构与算法(day2)--简单排序
模式:设计api实现api 简单排序 举例(商品排序) 1.1Comparable接口介绍(排序算法更有通用性:对象排序) 创建对象,并且生成豆子.创建Comparable接口 1 package c ...
- 解决MSsql 中文变成"?"的问题
ALTER DATABASE IMStest SET SINGLE_USER WITH ROLLBACK IMMEDIATE; ALTER database IMStest collate Chine ...
- [引擎开发] 深入GPU和渲染优化(基础篇)
https://blog.csdn.net/ZJU_fish1996/article/details/109269448
- 尺取法 C - Vasya and String CodeForces - 676C
C - Vasya and String CodeForces - 676C #include<iostream> using namespace std; int main() { lo ...
- VMware Workstation Pro 16、docker和Mysql相关
VMware Workstation Pro 16安装参考 docker容器的使用参考 Docker 容器使用 Docker Hub资源 Docker Hub Mysql数据库安装参考 Mysql数据 ...