Python 工匠: 异常处理的三个好习惯
前言
这是 “Python 工匠”系列的第 6 篇文章。(点击原文链接,可查看系列其他文章)

如果你用 Python 编程,那么你就无法避开异常,因为异常在这门语言里无处不在。打个比方,当你在脚本执行时按 ctrl+c 退出,解释器就会产生一个 KeyboardInterrupt 异常。而 KeyError、 ValueError、 TypeError 等更是日常编程里随处可见的老朋友。
异常处理工作由“捕获”和“抛出”两部分组成。“捕获”指的是使用 try...except 包裹特定语句,妥当的完成错误流程处理。而恰当的使用 raise 主动“抛出”异常,更是优雅代码里必不可少的组成部分。
在这篇文章里,我会分享与异常处理相关的 3 个好习惯。继续阅读前,我希望你已经了解了下面这些知识点:
- 异常的基本语法与用法(建议阅读官方文档 “Errors and Exceptions”)
- 为什么要使用异常代替错误返回(建议阅读《让函数返回结果的技巧》)
- 为什么在写 Python 时鼓励使用异常 (建议阅读 “Write Cleaner Python: Use Exceptions”)
三个好习惯
1. 只做最精确的异常捕获
假如你不够了解异常机制,就难免会对它有一种天然恐惧感。你可能会觉得:异常是一种不好的东西,好的程序就应该捕获所有的异常,让一切都平平稳稳的运行。而抱着这种想法写出的代码,里面通常会出现大段含糊的异常捕获逻辑。
让我们用一段可执行脚本作为样例:

脚本里的 save_website_title 函数做了好几件事情。它首先通过网络获取网页内容,然后利用正则匹配出标题,最后将标题写在本地文件里。而这里有两个步骤很容易出错:网络请求 与 本地文件操作。所以在代码里,我们用一个大大的 try...except 语句块,将这几个步骤都包裹了起来。安全第一。
那么,这段看上去简洁易懂的代码,里面藏着什么问题呢?
如果你旁边刚好有一台安装了 Python 的电脑,那么你可以试着跑一遍上面的脚本。你会发现,上面的代码是不能成功执行的。而且你还会发现,无论你如何修改网址和目标文件的值,程序仍然会报错 “save failed: unable to...”。为什么呢?
问题就藏在这个硕大无比的 try...except 语句块里。假如你把眼睛贴近屏幕,非常仔细的检查这段代码。你会发现在编写函数时,我犯了一个小错误,我把获取正则匹配串的方法错打成了 obj.grop(1),少了一个 'u'( obj.group(1))。
但正是因为那个过于庞大、含糊的异常捕获,这个由打错方法名导致的原本该被抛出的 AttibuteError 却被吞噬了。从而给我们的 debug 过程增加了不必要的麻烦。
异常捕获的目的,不是去捕获尽可能多的异常。假如我们从一开始就坚持:只做最精准的异常捕获。那么这样的问题就根本不会发生,精准捕获包括:
- 永远只捕获那些可能会抛出异常的语句块
- 尽量只捕获精确的异常类型,而不是模糊的
Exception
依照这个原则,我们的样例应该被改成这样:

2. 别让异常破坏抽象一致性
大约四五年前,当时的我正在开发某移动应用的后端 API 项目。如果你也有过开发后端 API 的经验,那么你一定知道,这样的系统都需要制定一套“API 错误码规范”,来为客户端处理调用错误时提供方便。
一个错误码返回大概长这个样子:

在制定好错误码规范后,接下来的任务就是如何实现它。当时的项目使用了 Django 框架,而 Django 的错误页面正是使用了异常机制实现的。打个比方,如果你想让一个请求返回 404 状态码,那么只要在该请求处理过程中执行 raiseHttp404 即可。
所以,我们很自然的从 Django 获得了灵感。首先,我们在项目内定义了错误码异常类:APIErrorCode。然后依据“错误码规范”,写了很多继承该类的错误码。当需要返回错误信息给用户时,只需要做一次 raise 就能搞定。

毫无意外,所有人都很喜欢用这种方式来返回错误码。因为它用起来非常方便,无论调用栈多深,只要你想给用户返回错误码,调用 raiseerror_codes.ANY_THING 就好。
随着时间推移,项目也变得越来越庞大,抛出 APIErrorCode 的地方也越来越多。有一天,我正准备复用一个底层图片处理函数时,突然碰到了一个问题。
我看到了一段让我非常纠结的代码:

process_image 函数会尝试解析一个文件对象,如果该对象不能被作为图片正常打开,就抛出 error_codes.INVALID_IMAGE_UPLOADED(APIErrorCode子类) 异常,从而给调用方返回错误代码 JSON。
让我给你从头理理这段代码。最初编写 process_image 时,我虽然把它放在了 util.image 模块里,但当时调这个函数的地方就只有 “处理用户上传图片的 POST 请求” 而已。为了偷懒,我让函数直接抛出 APIErrorCode 异常来完成了错误处理工作。
再来说当时的问题。那时我需要写一个在后台运行的批处理图片脚本,而它刚好可以复用 process_image 函数所实现的功能。但这时不对劲的事情出现了,如果我想复用该函数,那么:
- 我必须去捕获一个名为
INVALID_IMAGE_UPLOADED的异常- 哪怕我的图片根本就不是来自于用户上传
- 我必须引入
APIErrorCode异常类作为依赖来捕获异常- 哪怕我的脚本和
Django API根本没有任何关系
- 哪怕我的脚本和
这就是异常类抽象层级不一致导致的结果。APIErrorCode 异常类的意义,在于表达一种能够直接被终端用户(人)识别并消费的“错误代码”。它在整个项目里,属于最高层的抽象之一。但是出于方便,我们却在底层模块里引入并抛出了它。这打破了 image.processor 模块的抽象一致性,影响了它的可复用性和可维护性。
这类情况属于“模块抛出了高于所属抽象层级的异常”。避免这类错误需要注意以下几点:
- 让模块只抛出与当前抽象层级一致的异常
- 比如
image.processer模块应该抛出自己封装的ImageOpenError异常
- 比如
- 在必要的地方进行异常包装与转换
- 比如,应该在贴近高层抽象(视图 View 函数)的地方,将图像处理模块的
ImageOpenError低级异常包装转换为APIErrorCode高级异常
- 比如,应该在贴近高层抽象(视图 View 函数)的地方,将图像处理模块的
修改后的代码:

除了应该避免抛出高于当前抽象级别的异常外,我们同样应该避免泄露低于当前抽象级别的异常。
如果你用过 requests 模块,你可能已经发现它请求页面出错时所抛出的异常,并不是它在底层所使用的 urllib3 模块的原始异常,而是通过 requests.exceptions 包装过一次的异常。

这样做同样是为了保证异常类的抽象一致性。因为 urllib3 模块是 requests 模块依赖的底层实现细节,而这个细节有可能在未来版本发生变动。所以必须对它抛出的异常进行恰当的包装,避免未来的底层变更对 requests 用户端错误处理逻辑产生影响。
3. 异常处理不应该喧宾夺主
在前面我们提到异常捕获要精准、抽象级别要一致。但在现实世界中,如果你严格遵循这些流程,那么很有可能会碰上另外一个问题:异常处理逻辑太多,以至于扰乱了代码核心逻辑。具体表现就是,代码里充斥着大量的 try、 except、 raise 语句,让核心逻辑变得难以辨识。
让我们看一段例子:

这是一个处理用户上传头像的视图函数。这个函数内做了三件事情,并且针对每件事都做了异常捕获。如果做某件事时发生了异常,就返回对用户友好的错误到前端。
这样的处理流程纵然合理,但是显然代码里的异常处理逻辑有点“喧宾夺主”了。一眼看过去全是代码缩进,很难提炼出代码的核心逻辑。
早在 2.5 版本时,Python 语言就已经提供了对付这类场景的工具:“上下文管理器(context manager)”。上下文管理器是一种配合 with 语句使用的特殊 Python 对象,通过它,可以让异常处理工作变得更方便。
那么,如何利用上下文管理器来改善我们的异常处理流程呢?让我们直接看代码吧。

在上面的代码里,我们定义了一个名为 raise_api_error 的上下文管理器,它在进入上下文时什么也不做。但是在退出上下文时,会判断当前上下文中是否抛出了类型为 self.captures 的异常,如果有,就用 APIErrorCode 异常类替代它。
使用该上下文管理器后,整个函数可以变得更清晰简洁:

Hint:建议阅读 PEP 343 -- The "with" Statement | Python.org,了解与上下文管理器有关的更多知识。
模块 contextlib 也提供了非常多与编写上下文管理器相关的工具函数与样例。
总结
在这篇文章中,我分享了与异常处理相关的三个建议。最后再总结一下要点:
- 只捕获可能会抛出异常的语句,避免含糊的捕获逻辑
- 保持模块异常类的抽象一致性,必要时对底层异常类进行包装
- 使用“上下文管理器”可以简化重复的异常处理逻辑
看完文章的你,有没有什么想吐槽的?请留言或者在 项目 Github Issues 告诉我吧。
附录
- 题图来源: Photo by Bernard Hermant on Unsplash
- 更多系列文章地址:https://github.com/piglei/one-python-craftsman
系列其他文章:
蓝鲸智云
本文由腾讯蓝鲸智云编辑发布,腾讯蓝鲸智云(简称蓝鲸)软件体系是一套基于PaaS的技术解决方案,致力于打造行业领先的一站式自动化运维平台。目前已经推出社区版、企业版,欢迎体验。
- 官网:https://bk.tencent.com/
- 下载链接:https://bk.tencent.com/download/
- 社区:https://bk.tencent.com/s-mart/community/question
Python 工匠: 异常处理的三个好习惯的更多相关文章
- Python 工匠:一个关于模块的小故事
前言 模块(Module)是我们用来组织 Python 代码的基本单位.很多功能强大的复杂站点,都由成百上千个独立模块共同组成. 虽然模块有着不可替代的用处,但它有时也会给我们带来麻烦.比如,当你接手 ...
- [Python] Python工匠(Github)
1.善用变量来改变代码质量 变量命名 变量要有描述性,不能太宽泛 BAD:day, host, cards, temp GOOD:day_of_week, hosts_to_reboot, expir ...
- Python 工匠:善用变量来改善代码质量
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 作者:朱雷 | 腾讯IEG高级工程师 『Python 工匠』是什么? 我一直觉得编程某种意义上是一门『手艺 ...
- Python 工匠:编写条件分支代码的技巧
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 作者:朱雷 | 腾讯IEG高级工程师 『Python 工匠』是什么? 我一直觉得编程某种意义是一门『手艺』 ...
- Python进阶----异常处理
Python进阶----异常处理 一丶错误和异常 错误: 语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) #语法错误示范一 if #语法错误示范二 ...
- python基础篇(三)
PYTHON基础篇(三) 装饰器 A:初识装饰器 B:装饰器的原则 C:装饰器语法糖 D:装饰带参数函数的装饰器 E:装饰器的固定模式 装饰器的进阶 A:装饰器的wraps方法 B:带参数的装饰器 C ...
- Python 工匠:使用数字与字符串的技巧
序言 这是 "Python 工匠"系列的第 3 篇文章. 数字是几乎所有编程语言里最基本的数据类型,它是我们通过代码连接现实世界的基础.在 Python 里有三种数值类型:整型(i ...
- python学习心得第三章
python学习心得第三章 1.三元运算 变量=值1 if 条件 else 值2 由图如果条件成立则赋值1给变量,如果条件不成立则赋值2给变量. 2.数据类型 集合:set() class set(o ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
随机推荐
- JS - 使用 html2canvas 将页面转PDF
JS - 使用 html2canvas 将页面转PDF 本方法可以将页面元素块转为pdf. 网站地址 jspdf.js 官网地址:http://jspdf.com GitHub 主页:https:// ...
- Spring boot中最大连接数、最大线程数与最大等待数在生产中的异常场景
在上周三下午时,客户.业务和测试人员同时反溃生产环境登录进入不了系统,我亲自测试时,第一次登录进去了,待退出后再登录时,复现了客户的问题,场景像是请求连接被拒绝了,分析后判断是spring boot的 ...
- quasar + uni-app混合打包APP
写几个关键点,作为备忘录. 和所有框架一样,现在本地run build quasar的cli是 quasar build 然后记住打包好以后的静态文件 目录 uni-app新建一个5+App的默认模板 ...
- 使用 Nocalhost 开发 Rainbond 上的微服务应用
本文将介绍如何使用 Nocalhost 快速开发 Rainbond 上的微服务应用的开发流程以及实践操作步骤. Nocalhost 可以直接在 Kubernetes 中开发应用,Rainbond 可以 ...
- React简单教程-4-事件和hook
前言 在上一章 React 简单教程-3-样式 中我们建立了一个子组件,并稍微美化了一下.在另一篇文章 React 简单教程-3.1-样式之使用 tailwindcss 章我们使用了 tailwind ...
- 30款提升组织效能 SaaS 工具,我们的宝藏工具箱大公开
熟悉 Juicedata 的小伙伴知道,从2017年成立到第一款产品发布.从寻找PMF(Product Market Fit) 到开源,我们一直保持着一个精简的团队配置,不少人都很好奇我们是如何做到的 ...
- 深度学习与CV教程(14) | 图像分割 (FCN,SegNet,U-Net,PSPNet,DeepLab,RefineNet)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- Camunda如何适配国产数据库达梦
前言 camunda流程引擎官方支持的数据库有:MySQL .MariaDB .Oracle .DB2 .PostgreSQL .SQL Server.H2.对于其他类型的数据库如何支持,尤其是国产数 ...
- Python Pygal 模块安装和使用你get了吗?
Pygal 是另一个简单易用的数据图库,它以面向对象的方式来创建各种数据图,而且使用 Pygal 可以非常方便地生成各种格式的数据图,包括 PNG.SVG 等.使用 Pygal 也可以生成 XML e ...
- python采集A站m3u8视频格式视频
基本开发环境 (https://jq.qq.com/?_wv=1027&k=NofUEYzs) Python 3.6 Pycharm 相关模块的使用 (https://jq.qq.com/?_ ...