LA 3485 (积分 辛普森自适应法) Bridge
桥的间隔数为n = ceil(B/D),每段绳子的长度为L / n,相邻两塔之间的距离为 B / n
主要问题还是在于已知抛物线的开口宽度w 和 抛物线的高度h 求抛物线的长度
弧长积分公式为:
设抛物线方程为f(x) = ax2,则这段抛物线弧长为
查积分表或者自己分部积分算一下: 
二分抛物线高度x,使得每段抛物线长度为L / n,所求答案为H - x
#include <cstdio>
#include <cmath> inline double F(double a, double x)
{//sqrt(a^2+x^2)的原函数
double a2 = a*a, x2 = x*x;
double s = sqrt(a2+x2);
return (x*s + a2*log(x+s))/;
} double length(double w, double h)
{//宽为w,高为h的抛物线的长度
double a = *h/w/w;
double b = 0.5/a;
return *a*(F(b, w/) - F(b, ));
} int main()
{
//freopen("in.txt", "r", stdin); int T;
scanf("%d", &T);
for(int kase = ; kase <= T; kase++)
{
int D, H, B, L;
scanf("%d%d%d%d", &D, &H, &B, &L);
int n = (B-)/D + ; //间隔数
double d = (double)B / n; //间隔
double l = (double)L / n; //每段绳长
double Left = , Right = H;
while(Right - Left > 1e-)
{//二分求抛物线高度
double mid = (Right + Left) / ;
if(length(d, mid) > l) Right = mid;
else Left = mid;
}
if(kase > ) puts("");
printf("Case %d:\n%.2f\n", kase, H-Left);
} return ;
}
代码君
后面又介绍了一种Simpson自适应算法,可以求任意连续函数的积分。

虽然不明白这个式子是怎么来的,但并不能阻止我们学习自适应辛普森算法。
书上还说可以将区间端点和中点的函数值作为参数传入以减少重复计算,求教。。
#include <cstdio>
#include <cmath> double a; inline double F(double x)
{ return sqrt(+*a*a*x*x); } double simpson(double a, double b)
{
double c = (a+b)/;
return (F(a)+*F(c)+F(b))*(b-a)/;
} double asr(double a, double b, double eps, double A)
{
double c = (a+b)/;
double L = simpson(a, c), R = simpson(c, b);
if(fabs(L+R-A) <= *eps) return L + R + (L+R-A)/15.0;
return asr(a, c, eps/, L) + asr(c, b, eps/, R);
} double asr(double a, double b, double eps)
{
return asr(a, b, eps, simpson(a, b));
} double length(double w, double h)
{
a = 4.0*h/w/w;
return asr(, w/, 1e-) * ;
} int main()
{
//freopen("in.txt", "r", stdin); int T;
scanf("%d", &T);
for(int kase = ; kase <= T; kase++)
{
int D, H, B, L;
scanf("%d%d%d%d", &D, &H, &B, &L);
int n = (B-)/D + ;
double d = (double)B / n;
double l = (double)L / n;
double x = , y = H;
while(y - x > 1e-)
{
double m = (x + y) / ;
if(length(d, m) > l) y = m;
else x = m;
}
if(kase > ) puts("");
printf("Case %d:\n%.2f\n", kase, H - x);
} return ;
}
代码君
LA 3485 (积分 辛普森自适应法) Bridge的更多相关文章
- LA 3485 Bridge
自适应辛普森公式模板. #include<algorithm> #include<iostream> #include<cstring> #include<c ...
- UVA 1356 - Bridge(自适应辛普森)
UVA 1356 - Bridge option=com_onlinejudge&Itemid=8&page=show_problem&category=493&pro ...
- $Simpson$积分入门
\(\rm{0x01}\) 前言 首先阐明一点,自适应辛普森算法(\(\rm{Adaptive ~Simpson's~ rule}\) )是一类近似算法(\(\rm{Approximation ~al ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- pytorch基础学习(二)
在神经网络训练时,还涉及到一些tricks,如网络权重的初始化方法,优化器种类(权重更新),图片预处理等,继续填坑. 1. 神经网络初始化(Network Initialization ) 1.1 初 ...
- TCP(一)
传输控制协议TCP特点:1,面向连接的运输层协议 2,每一条TCP只能有两个端点.点对点 3,TCP是可靠的,无差错,不重复,顺序到达. 4,全双工,允许通信 ...
- 计算几何 val.3
目录 计算几何 val.3 自适应辛普森法 定积分 引入 辛普森公式 处理精度 代码实现 模板 时间复杂度 练习 闵可夫斯基和 Pick定理 结论 例题 后记 计算几何 val.3 自适应辛普森法 可 ...
- zhengrui集训笔记2
Day_6 计算几何 点积\Large 点积点积 叉积\Large 叉积叉积 极角\Large 极角极角 < π\piπ :叉积判断 else :atan2 旋转\Large 旋转旋转 左乘第一 ...
- 关于redis内存分析,内存优化
对于redis来说,什么是最重要的? 毋庸置疑,是内存. 一.reids 内存分析 redis内存使用情况:info memory 示例: 可以看到,当前节点内存碎片率为226893824/20952 ...
随机推荐
- java 非法字符过滤 , 半角/全角替换
java 非法字符过滤 , 半角/全角替换 package mjorcen.netty.test1; import java.io.UnsupportedEncodingException; publ ...
- BZOJ3473: 字符串
3473: 字符串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 109 Solved: 47[Submit][Status] Descriptio ...
- DIV+CSS 基础
盒子模型:margin(边界),可被占位:border(边框):padding(填充):content(内容) 块元素: 默认占据一行,前后换行. 作为容器,装载块元素和行内元素,被装载元素的位置,会 ...
- xml存储图片 二进制存储图片
一.保存图片到XML文件 /// <summary> /// 保存图片到XML文件 /// </summary> private void UploadImageToXml() ...
- jQuery1.9.1源码分析--Animation模块
var fxNow, // 使用一个ID来执行动画setInterval timerId, rfxtypes = /^(?:toggle|show|hide)$/, // eg: +=30.5px / ...
- C# Socket编程笔记(转)
C# Socket编程笔记 http://www.cnblogs.com/stg609/archive/2008/11/15/1333889.html TCP Socket:Server 端连接步骤: ...
- DP方程及意义
01背包 有N件物品和一个容量为V的背包.第i件物品的费用(即体积,下同)是w[i],价值是c[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路: 这是最基 ...
- 李洪强iOS开发之OC语言类的深入和分类
OC语言类的深入和分类 一.分类 (一)分类的基本知识 概念:Category 分类是OC特有的语言,依赖于类. 分类的作用:在不改变原来的类内容的基础上,为类增加一些方法. 添加一个分类: 文件 ...
- Apache与Tomcat整合
Apache与Tomcat整合 一 Apache与Tomcat比较联系 apache支持静态页,tomcat支持动态的,比如servlet等. 一般使用apache+tomcat的话,apache ...
- eclipse中(装了插件m2eclipse后的)导入maven工程显示"感叹号"
有时候导入一些开源工程(maven结构的),在eclipse中(装了插件m2eclipse后的)该工程前面会有一个小的红色感叹号,但点开工程后没有发现有打小红叉的内容,这种情况其实大部分是jar包 ...