uvalive 3523 Knights of the Round Table 圆桌骑士(强连通+二分图)
题目真心分析不出来。看了白书才明白,不过有点绕脑。
容易想到,把题目给的不相邻的关系,利用矩阵,反过来建图。既然是全部可行的关系,那么就应该能画出含奇数个点的环。求环即是求双连通分量:找出所有的双连通分量,只要分量中的点数是奇数,则排除“must be expelled”的可能性。
判环上的点数用二分图,这个我都想了半天= =,如果是奇数个点,明摆着多出来的一个点放到哪个集合都会与集合内的点连边(这个找三个点自己画画试试就明白了)。0、1染色,本人喜欢用bfs,递归什么的其实都可以。
我自己用缩点做的,果断wa到吐。举个例子:五个点,{1,2,3}{3,4,5},这样3就是一个割顶了,缩点的话是在遍历完邻接表之后,再判断low[u]==dfn[u],如此5个点就缩成了一个点,即一个分量,虽然这个分量包含奇数个点,输出同样是0,但与我们的思路是不一样的。实际情况是分成两个分量,每个分量有三个点,割顶3同时出现在两个分量中。然后想着改进,当把割顶弹出栈后,再弹入,搞啊搞,还是算了,学着白书上用边搞。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std; const int MAXN=; struct EDGE{
int u,v;
EDGE(){}
EDGE(int _u,int _v):u(_u),v(_v){}
}; struct Edge{
int v,next;
Edge(){}
Edge(int _v,int _next):v(_v),next(_next){}
}edge[MAXN*MAXN]; int mp[MAXN][MAXN],tol,head[MAXN];
int low[MAXN],dfn[MAXN],bccno[MAXN],iscut[MAXN],TT,bcc_cnt;
int que[MAXN],color[MAXN];
int sign[MAXN]; vector<int >bcc[MAXN];
stack<EDGE >stk; void init()
{
tol=;
memset(head,-,sizeof(head));
} void add(int u,int v)
{
edge[tol]=Edge(v,head[u]);
head[u]=tol++;
} void dfs(int u,int fa)
{
low[u]=dfn[u]=++TT;
int son=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
EDGE e=EDGE(u,v);
if(!dfn[v]){
stk.push(e);
son++;
dfs(v,u);
low[u]=min(low[v],low[u]);
if(low[v]>=low[u]){
iscut[u]=;
bcc_cnt++;
bcc[bcc_cnt].clear();
while()
{
EDGE x=stk.top();
stk.pop();
if(bccno[x.u]!=bcc_cnt){
bcc[bcc_cnt].push_back(x.u);
bccno[x.u]=bcc_cnt;
}
if(bccno[x.v]!=bcc_cnt){
bcc[bcc_cnt].push_back(x.v);
bccno[x.v]=bcc_cnt;
}
if(x.u==u&&x.v==v)
break;
}
}
}else if(dfn[v]<dfn[u]&&v!=fa){
stk.push(e);
low[u]=min(low[u],dfn[v]);
}
}
if(fa<&&son==)
iscut[u]=;
} void find_bcc(int n)
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(bccno,,sizeof(bccno));
memset(iscut,,sizeof(iscut)); TT=bcc_cnt=; for(int i=;i<=n;i++)
if(!dfn[i])
dfs(i,-);
} bool bfs(int x,int fa)
{
int l,r;
l=r=;
que[r++]=x;
while(l<r)
{
int u=que[l++];
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].v;
if(bccno[v]!=fa)
continue ;
if(color[v]==-){
color[v]=color[u]^;
que[r++]=v;
}else if(color[v]==color[u])
return false;
}
}
return true;
} void Bjudge()
{
memset(sign,,sizeof(sign));
for(int i=;i<=bcc_cnt;i++)
{
memset(color,-,sizeof(color));
for(int j=;j<bcc[i].size();j++)
bccno[bcc[i][j]]=i;
int u=bcc[i][];
color[u]=;
if(!bfs(u,i)){
for(int j=;j<bcc[i].size();j++)
sign[bcc[i][j]]=;
}
}
} int main()
{
int n,m;
int a,b;
while(~scanf("%d%d",&n,&m)!=EOF)
{
if(!n&&!m)
break;
memset(mp,,sizeof(mp));
for(int i=;i<m;i++)
{
scanf("%d%d",&a,&b);
mp[a][b]=mp[b][a]=;
} init();
for(int i=;i<=n;i++)
{
for(int j=i+;j<=n;j++)
{
if(!mp[i][j]){
add(i,j);
add(j,i);
}
}
} find_bcc(n); Bjudge(); int ans=;
for(int i=;i<=n;i++)
if(!sign[i])
ans++;
printf("%d\n",ans);
}
return ;
}
/*
5 4
1 4
1 5
2 4
2 5 6 8
1 4 1 5 1 6
2 4 2 5 2 6
3 4 3 5
*/
最近做了几道connectivity的题目,总结一下。
关于割顶、桥、双连通、边双连通,以及强连通处理方式有其相似性,关键都与时间戳有关。
其中,割顶->双连通 是low[v]>=dfn[u],桥->边双连通 是low[v]>dfn[u],只是一个等号的差别,其他处理基本相同;而强连通总是伴随着缩点 low[u]==dfn[u](这个一般是做边标记edge[].vis,这样即使是无向图也可以以edge[i^1].vis标记掉,而不影响重边的情况)。事实上,如果不考虑具体的桥,对边-双连通分量的划分就是在做无向图上的缩点操作。
这三个判定条件的位置也有不同。缩点是在遍历完u的邻接表之后,用每个low[v]的值更新low[u],并且u本身不会连到祖先去(这一点很重要),则是一个环,可以缩掉;在无向图中,判断双连通分量,也就是割顶(边-双连通分量&桥 一样),是每遍历一个孩子v,就要判断:low[v]>=dfn[u],只要点u的孩子所能到达的最大值不超过u,那么u就是割顶(删除u后,该子树独立),当然,u的每一个孩子v都可以是被 割顶u 分离,注意u本身是可以与它的祖先连接的!!
uvalive 3523 Knights of the Round Table 圆桌骑士(强连通+二分图)的更多相关文章
- UVALive 3523 Knights of the Round Table 圆桌骑士 (无向图点双连通分量)
由于互相憎恨的骑士不能相邻,把可以相邻的骑士连上无向边,会议要求是奇数,问题就是求不在任意一个简单奇圈上的结点个数. 如果不是二分图,一定存在一个奇圈,同一个双连通分量中其它点一定可以加入奇圈.很明显 ...
- UVALive - 3523 - Knights of the Round Table
Problem UVALive - 3523 - Knights of the Round Table Time Limit: 4500 mSec Problem Description Input ...
- POJ2942 UVA1364 Knights of the Round Table 圆桌骑士
POJ2942 洛谷UVA1364(博主没有翻墙uva实在是太慢了) 以骑士为结点建立无向图,两个骑士间存在边表示两个骑士可以相邻(用邻接矩阵存图,初始化全为1,读入一对憎恨关系就删去一条边即可),则 ...
- poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 9169 Accep ...
- UVALive 3523 : Knights of the Round Table (二分图+BCC)
题目链接 题意及题解参见lrj训练指南 #include<bits/stdc++.h> using namespace std; ; int n,m; int dfn[maxn],low[ ...
- KNIGHTS - Knights of the Round Table 圆桌骑士 点双 + 二分图判定
---题面--- 题解: 考场上只想到了找点双,,,,然后不知道怎么处理奇环的问题. 我们考虑对图取补集,这样两点之间连边就代表它们可以相邻, 那么一个点合法当且仅当有至少一个大小至少为3的奇环经过了 ...
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- uva 3523 Knights of the Round Table
题意:给你n,m n为有多少人,m为有多少组关系,每组关系代表两人相互憎恨,问有多少个骑士不能参加任何一个会议. 白书算法指南 对于每个双联通分量,若不是二分图,就把里面的节点标记 #include ...
- UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)
题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...
随机推荐
- IntelliJ IDEA 15 设置默认浏览器
一.设置系统默认浏览器 二.设置项目启动默认浏览器
- ByteArrary(优化数据存储和数据流)
原地址:http://www.unity蛮牛.com/blog-1801-799.html 首页 博客 相册 主题 留言板 个人资料 ByteArrary(优化数据存储和数据流) 分类:unity ...
- LVS+Keepalived实现高可用集群
LVS+Keepalived实现高可用集群来源: ChinaUnix博客 日期: 2009.07.21 14:49 (共有条评论) 我要评论 操作系统平台:CentOS5.2软件:LVS+keepal ...
- HDU 2473 Junk-Mail Filter(并查集+删点,设立虚父节点/找个代理)
题意:有N封邮件, 然后又两种操作,如果是M X Y , 表示X和Y是相同的邮件.如果是S X,那么表示对X的判断是错误的,X是不属于X当前所在的那个集合,要把X分离出来,让X变成单独的一个.最后问集 ...
- POJ 1716
#include <iostream> #include <algorithm> #define MAXN 20005 using namespace std; int _m[ ...
- Ubuntu环境下手动配置ElasticSearch0.90.5
1 下载elasticsearch-0.90.5 2 修改配置(可选) 修改内存:(可选) bin/elasticsearch.in.sh中: ES_MIN_MEM ES_MAX_MEM 修改搜索引擎 ...
- BZOJ 3720 gty的妹子树
块状树裸题 块状树: 首先对树进行分块,分出的每一块都是一个连通块 通常的分块的方式如下: 1.父亲所在块不满,分到父亲所在块中 2.父亲所在块满,自己单独开一个块 (貌似有更为优越的分块方式? 注意 ...
- *[topcoder]TaroFriends
http://community.topcoder.com/stat?c=problem_statement&pm=13005 好题.最暴力是试验2^n种跳法.然后有从结果入手,那么最终的左右 ...
- compiler 学习
一款强大的编译器LLVM:http://llvm.org/docs/GettingStarted.html#layout http://llvm.org/docs/LangRef.html http: ...
- java nio管道
管道(Pipe) (本部分原文链接,作者:Jakob Jenkov,译者:黄忠,校对:丁一) Java NIO 管道是2个线程之间的单向数据连接.Pipe有一个source通道和一个sink通道.数据 ...