Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible

题意:给你一列整数,在整数间加‘ + ’ 或 ‘ - ‘,使这个算式的值能被k整除。

用dp[ i ][ j ] 表示加上或减去第 i 个数后,所得值取模后的值能否为 j ,所以dp为bool型即可。

状态转移方程:dp[ i ][ abs( j + num[i]) % k] = true;

dp[ i ][ abs( j -  num[i]) % k] = true; (当然,必须满足dp[ i - 1 ][ j ] == true, 才能进行状态转移)

边界条件:dp[ 0 ][ 0 ] = true;

 #include"iostream"
#include"cstdio"
#include"cstring"
#include"algorithm"
#include"map"
#include"set"
#include"stack"
#include"queue"
using namespace std;
const int ms=;
const int mn=;
bool dp[ms][mn];
int a[ms];
int N,K;
void solve()
{
memset(dp,false,sizeof(dp));
dp[][]=true;
for(int i=;i<=N;i++)
for(int j=;j<K;j++)
if(dp[i-][j])
{
dp[i][abs(j+a[i])%K]=true; //涉及一点数论
dp[i][abs(j-a[i])%K]=true;
}
if(dp[N][])
cout<<"Divisible"<<endl;
else
cout<<"Not divisible"<<endl;
return ;
}
int main()
{
cin>>N>>K;
for(int i=;i<=N;i++)
cin>>a[i];
solve();
return ;
}

Divisibility的更多相关文章

  1. cf306 C. Divisibility by Eight(数学推导)

    C. Divisibility by Eight time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  2. 周赛-Clique in the Divisibility Graph 分类: 比赛 2015-08-02 09:02 23人阅读 评论(3) 收藏

    Clique in the Divisibility Graph time limit per test1 second memory limit per test256 megabytes inpu ...

  3. Codeforces Round #306 (Div. 2) C. Divisibility by Eight 暴力

    C. Divisibility by Eight Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...

  4. Divisibility by Eight (数学)

    Divisibility by Eight time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  5. codeforces 630J Divisibility

    J. Divisibility time limit per test 0.5 seconds memory limit per test 64 megabytes input standard in ...

  6. Codeforces Testing Round #12 A. Divisibility 水题

    A. Divisibility Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/597/probl ...

  7. HDU 3335 Divisibility (DLX)

    Divisibility Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  8. light oj 1078 - Integer Divisibility

    1078 - Integer Divisibility   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 3 ...

  9. POJ 1745 Divisibility (线性dp)

    Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10598   Accepted: 3787 Des ...

随机推荐

  1. c++ 概念及学习/c++ concept&learning(二)

    上篇内容讲述了整个语言的发展[为什么会产生编程语言],以及学习C++所需要掌握的内容.这节开始认识第一部分最基本的内容:C++的内建类型,也就是基本类型. 在这些知识之前留一个问题:为什么基本所有语言 ...

  2. 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  3. 编译器对C++ 11变参模板(Variadic Template)的函数包扩展实现的差异

    编译器对C++ 11变参模板(Variadic Template)的函数包扩展实现的差异 题目挺绕口的.C++ 11的好东西不算太多,但变参模板(Variadic Template)肯定是其中耀眼的一 ...

  4. WinJS.Binding.List与kendo.data.ObservableArray

    avalon0.8一个最大目标是实现对数组的深层监控,可是面临的困难重重,至今还没有什么起色.于是看一下其他两个MVVM框架的做法(knockout, emberjs, angular都不能监听家庭数 ...

  5. nyoj 10 skiing(记忆化搜索)

    skiing 时间限制:3000 ms  |  内存限制:65535 KB 难度:5   描述 Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当 ...

  6. Spring Data JPA教程, 第五部分: Querydsl(未翻译)

    The fourth part of my Spring Data JPA tutorialdescribed how you can implement more advanced queries ...

  7. jeecms附件标签用法

    [#if content.attachments?size gt 0] [#list content.attachments as attach] <a id="attach${att ...

  8. Android_通过传感器抓小偷

    package com.beyond.phonestolen; import android.hardware.Sensor; import android.hardware.SensorEvent; ...

  9. 04.URL路径访问与模块控制器之间的关系

    <?php //初使化,进行加载. //通过这个英文名来了解,他是定义的与thinkphp有关的核心框架文件目录路径 //他可以通过这一个常量,在以后运行的时候都去找这个路径,确保在运行过程当, ...

  10. [MODx] 3. Working with chunks, TV, Category

    1. Add chunk: For example, replace the header by using chunk. Usage: [[$chunk_name]] Cut all the hea ...