Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

【样例说明】

第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1

的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是

1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3

大的数是 1 。‍

N,M<=50000,N,M<=50000

a<=b<=N

1操作中abs(c)<=N

2操作中abs(c)<=Maxlongint

【思路】

线段树套线段树

里面的线段树基于区间,外面的线段树基于权值。我们就可以知道权值在[a,b]内且位置位于[c,d]内的数有多少个。

Add操作:在外面的线段树中找到c,将路径上经过的所有点对应的内层线段树区间[a,b]加1。

Query操作:在外面的线段树中通过询问对应的内层线段树结点的多少进行类似平衡树的转移。

线段树动态分配节点。

求第k大。。。

【代码】

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long ll;
const int N = +;
const int M = +; struct Tnode{
int lc,rc,add,sum;
Tnode(){}
}T[M]; int read() {
char c=getchar();
int f=,x=;
while(!isdigit(c)) {
if(c=='-') f=-; c=getchar();
}
while(isdigit(c))
x=x*+c-'',c=getchar();
return x*f;
} int n,m,sz;
int rt[M]; void pushdown(int u,int l,int r)
{
if(!T[u].add || l==r) return ;
if(!T[u].lc) T[u].lc=++sz;
if(!T[u].rc) T[u].rc=++sz;
int v=T[u].add , mid=(l+r)>>;
T[T[u].lc].add+=v;
T[T[u].rc].add+=v;
T[T[u].lc].sum+=v*(mid-l+);
T[T[u].rc].sum+=v*(r-mid);
T[u].add=;
}
void update(int &u,int l,int r,int L,int R)
{
if(!u) u=++sz;
pushdown(u,l,r);
if(L<=l&&r<=R) {
T[u].add++;
T[u].sum+=r-l+;
} else {
int mid=(l+r)>>;
if(L<=mid) update(T[u].lc,l,mid,L,R);
if(mid<R ) update(T[u].rc,mid+,r,L,R);
T[u].sum=T[T[u].lc].sum+T[T[u].rc].sum;
}
}
int query(int u,int l,int r,int L,int R)
{
if(!u) return ;
pushdown(u,l,r);
if(L<=l&&r<=R) return T[u].sum;
else {
int mid=(l+r)>>,ans=;
if(L<=mid) ans+=query(T[u].lc,l,mid,L,R);
if(mid<R ) ans+=query(T[u].rc,mid+,r,L,R);
return ans;
}
}
void change(int a,int b,int c)
{
int u=,l=,r=n;
while(l!=r) {
int mid=(l+r)>>;
update(rt[u],,n,a,b);
if(c<=mid) r=mid,u=u<<;
else l=mid+,u=u<<|;
}
update(rt[u],,n,a,b);
}
int query(int a,int b,int c)
{
int u=,l=,r=n;
while(l!=r) {
int mid=(l+r)>>;
int t=query(rt[u<<],,n,a,b);
if(c<=t) r=mid,u=u<<;
else l=mid+,u=u<<|,c-=t;
}
return l;
} int main()
{
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
n=read(),m=read();
int op,a,b,c;
FOR(i,,m) {
op=read(),a=read(),b=read(),c=read();
if(op==) {
change(a,b,n-c+);
} else {
printf("%d\n",n-query(a,b,c)+);
}
}
return ;
}

bzoj 3110 [Zjoi2013]K大数查询(树套树)的更多相关文章

  1. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  2. BZOJ 3110: [Zjoi2013]K大数查询 [树套树]

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6050  Solved: 2007[Submit][Sta ...

  3. 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 &amp; 3236 [Ahoi2013] 作业 题解

    [原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 978  Solved: 476 Descri ...

  4. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  5. BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )

    BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...

  6. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  7. BZOJ 3110 [Zjoi2013]K大数查询(整体二分)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 11654  Solved: 3505[Submit][St ...

  8. bzoj 3110 [Zjoi2013]K大数查询【树套树||整体二分】

    树套树: 约等于是个暴力了.以区间线段树的方式开一棵权值线段树,在权值线段树的每一个点上以动态开点的方式开一棵区间线段树. 结果非常惨烈(时限20s) #include<iostream> ...

  9. BZOJ 3110 [Zjoi2013]K大数查询 ——树套树

    [题目分析] 外层区间线段树,内层是动态开点的权值线段树. SY神犇说树套树注重的是内外层的数据结构的选择问题,果然很重要啊. 动态开点的实现方法很好. [代码] #include <cstdi ...

  10. BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]

    有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...

随机推荐

  1. Unity3D调用第三方SDK(之一)从eclipse到Unity3D 友盟

    原地址:http://www.360doc.com/content/14/0120/14/11670799_346638215.shtml 篇展示在Unity3D中调用友盟SDK的实现方法. 首先附上 ...

  2. express 3.0.x 中默认不支持flash() 的解决方法

    Express 3.x默认已经不支持req.flash(),如果要用flash()需要这样兼容 1.flash 消息暂存在session中,需要cookieParser 和 session中间件来声明 ...

  3. Flask, Tornado, GEvent, 以及它们的结合的性能比较

    Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...

  4. HDU4720+三角形外接圆

    /* 几何 求给定三角形的外接圆圆心 方法:求解二元方程组 */ #include<stdio.h> #include<string.h> #include<math.h ...

  5. maven 如何解决因本地jar导致的编译错误

    如何解决Maven依赖本地非repository中的jar包,依赖jar包放在WEB-INF/lib等目录下的情况客户端编译出错的处理.http://www.mamicode.com/info-det ...

  6. CityEngine 2013部署安装

    安装环境: windows8.1 专业版 已安装arcgis10.2 2的授权方式也同样分为:单机许可和浮动 许可.单机许可是将许可部署在本机直接使用:浮动许可是部署到服务器上通过IP地址连接,可借出 ...

  7. Oracl 动态执行表不可访问,本会话的自动统计被禁止

    oracle ---建立SQL窗体 写入 select * from tableA; 弹出错误窗口 : 动态执行表不可访问,本会话的自动统计被禁止.在执行菜单里你可以禁止统计,或在v$session, ...

  8. ZOJ1586——QS Network(最小生成树)

    QS Network DescriptionIn the planet w-503 of galaxy cgb, there is a kind of intelligent creature nam ...

  9. 再分析 返回值加引用&,const

    本文主要分析,返回&,和返回值加const的作用. 返回& 定义一个数组模板: template<class T>class Array{ enum{size = 100} ...

  10. Fast scroller styles

    <!-- Fast scroller styles --> <!-- Drawable to use as the fast scroll thumb. --> <att ...