【解惑】剖析float型的内存存储和精度丢失问题
问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么?
现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?
1、小数的二进制表示问题
首先我们要搞清楚下面两个问题:
(1) 十进制整数如何转化为二进制数
算法很简单。举个例子,11表示成二进制数:
11/2=5 余 1
5/2=2 余 1
2/2=1 余 0
1/2=0 余 1
0结束 11二进制表示为(从下往上):1011
这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。
(2) 十进制小数如何转化为二进制数
算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数
0.9*2=1.8 取整数部分 1
0.8(1.8的小数部分)*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 1
0.2*2=0.4 取整数部分 0
0.4*2=0.8 取整数部分 0
0.8*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 0
......... 0.9二进制表示为(从上往下): 1100100100100......
注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。
2、 float型在内存中的存储
众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下
float内存存储结构
4bytes 31 30 29----23 22----0
表示 实数符号位 指数符号位 指数位 有效数位
其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。
将一个float型转化为内存存储格式的步骤为:
(1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
(2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
(3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
(4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
(5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
(6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。
举例说明: 11.9的内存存储格式
(1) 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。
(2) 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110 "。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。
(3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“ 011 11100110011001100110 ”共23bit。将它放入float存储结构的第22到第0位。
(4) 因为11.9是正数,因此在第31位实数符号位放入“0”。
(5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。
(6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。
最后表示11.9为: 0 1 0000010 011 11100110011001100110
再举一个例子:0.2356的内存存储格式
(1)将0.2356化为二进制后大约是0.00111100010100000100100000。
(2)将小数点右移三位得到1.11100010100000100100000。
(3)从小数点右边数出二十三位有效数字,即11100010100000100100000放
入第22到第0位。
(4)由于0.2356是正的,所以在第31位放入“0”。
(5)由于我们把小数点右移了,所以在第30位放入“0”。
(6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。
最后表示0.2356为:0 0 1111100 11100010100000100100000
将一个内存存储的float二进制格式转化为十进制的步骤:
(1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
(2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
(3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
(4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。
3、浮点型的减法运算
浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
(1) 0操作数的检查;
如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。
(2) 比较阶码(指数位)大小并完成对阶;
两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。
如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):
通过尾数的移位以改变 Ex 或 Ey ,使之相等。 由 于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定 使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。
(3) 尾数(有效数位)进行加或减运算;
对阶完毕后就可 有效数位 求和。 不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
(4) 结果规格化并进行舍入处理。
略
浮点数的加减法:具体见http://www.zzslxx.com/wmy/jy/Chap02/2.7.1.htm
4、 计算12.0f-11.9f
12.0f 的内存存储格式为: 0 1 0000010 10000000000000000000000
11.9f 的内存存储格式为: 0 1 0000010 011 11100110011001100110
可见两数的指数位完全相同,只要对有效数位进行减法即可。
12.0f-11.9f 结果: 0 1 0000010 00000011001100110011010
将结果还原为十进制为: 0.000 11001100110011010= 0.10000038
【解惑】剖析float型的内存存储和精度丢失问题的更多相关文章
- Java Float类型 减法运算时精度丢失问题
package test1; public class Test2 { /*** @param args*/public static void main(String[] args) { Flo ...
- float,double等精度丢失问题 float,double内存表示
问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么? 来自MSDN的解释: http://msdn.microsoft.com/zh-cn/c151dt3s. ...
- Java中float型最大值大于long型?
float型在内存中占用的是4个字节的空间,而long型占用的是8个字节的空间. 注:float类型的范围是:一3.403E38~3.403E38.而long类型的范围是:-2^63~2^63-1(大 ...
- float类型进行计算精度丢失的问题
今天一个案子,用户反映数量差异明明是 2.0-1.8,显示的结果却为0.20000005,就自己写了段方法测试了一下:package test1;public class Test2 {/*** @p ...
- 【转】JAVA程序中Float和Double精度丢失问题
原文网址:http://blog.sina.com.cn/s/blog_827d041701017ctm.html 问题提出:12.0f-11.9f=0.10000038,"减不尽" ...
- java中double和float精度丢失问题
为什么会出现这个问题呢,就这是java和其它计算机语言都会出现的问题,下面我们分析一下为什么会出现这个问题:float和double类型主要是为了科学计算和工程计算而设计的.他们执行二进制浮点运算,这 ...
- float数据在内存中的存储方法
浮点型变量在计算机内存中占用4字节(Byte),即32-bit.遵循IEEE-754格式标准.一个浮点数由2部分组成:底数m 和 指数e. ±mant ...
- 将一个float型转化为内存存储格式的步骤
将一个float型转化为内存存储格式的步骤为: (1)先将这个实数的绝对值化为二进制格式. (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边. (3)从小数点右边 ...
- memcached全面剖析--2.理解memcached的内存存储
下面是<memcached全面剖析>的第二部分. 发表日:2008/7/9 作者:前坂徹(Toru Maesaka) 原文链接:http://gihyo.jp/dev/feature/01 ...
随机推荐
- ActiveReports 9实战教程(2): 准备数据源(设计时、运行时)
原文:ActiveReports 9实战教程(2): 准备数据源(设计时.运行时) 在上讲中<ActiveReports 9实战教程(1): 手把手搭建环境Visual Studio 2013 ...
- centos6的安装
centos6的安装,一步一图,有图有真相 打开虚拟机VMware,点击文件,选择[新建虚拟机],如图所示
- 【分布式存储系统sheepdog
】
Sheepdog,是由NTT的3名日本研究员开发的开源项目,主要用来为虚拟机提供块设备. 其架构例如以下: 以下,我们将从架构.模块等几个方面来介绍下: 一.架构图 如上图: 採用无中心节点的全对称架 ...
- Cocos2d-x在Android在竖屏切换
在Cocos2d-x在,屏幕类型的默认设置是横屏,当我们需要切换到肖像,能够在项目目录打开proj.android目录.找到AndroidManifest.xml文件,直接打开,然后就可以看到里面:s ...
- 【转】【Android UI设计与开发】第07期:底部菜单栏(二)Fragment的详细介绍和使用方法
原始地址:http://blog.csdn.net/yangyu20121224/article/category/1431917/1 由于TabActivity在Android4.0以后已经被完全弃 ...
- Android项目--XML解析
对于xml文件,一般有两种解析方式: -----pull解析-------- -----Sax解析------- 如果xml文件是本地文件,那么就好说了 AssetManager assetManag ...
- 自己写RTPserver——大约RTP协议
自己写RTPserver--大约RTP协议 本文将带领你一步一步地实现一个简单的手RTP变速器server,旨在了解RTP流媒体传输协议以及有关多媒体编解码器的一些知识. RTP协议的必备知识 要动手 ...
- QQ三方登录步骤详解
首先,登录QQ互联:http://connect.qq.com/intro/login ,注册成为开发者 选择申请加入,并创建你的应用. 创建成功后可以获取到appid和appkey 在网站的主页引 ...
- C# 学习笔记1 .NET平台,C#的重要概念
.NET平台构成的三个关键实体是: 1.CLR(公共语言运行库):为我们定位,加载,管理.NET类型,同时负责一些底层细节的工作,如内存管理,应用托管,处理线程,安全检查等,它包含了一个重要名为msc ...
- 引用动态链接库Dll文件 引用失败 未能添加对HD.dll的引用。请确保此文件可访问并且是一个有效的程序集或COM组件
出现这个问题,是由于使用了非.NET 的动态链接库,需要注册 方法如下: 1.在搜索程序和文件中使用 regsvr32 "D:\Projects\8.01.01.03-重庆大足\lib\Va ...