寒假做的题了,先贴那时写的代码。

POJ 1061

#include<iostream>
#include<cstdio>
typedef long long LL;
using namespace std; void extend_gcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if(b==0)
{
d=a;
x=1,y=0;
}
else
{
extend_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} int main()
{
LL x,y,m,n,L;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&L)!=EOF)
{
LL d,xx,yy;
extend_gcd(n-m,L,d,xx,yy);
if((x-y)%d==0)
{
LL p=L/d;
xx=(x-y)/d*xx;
xx=(xx%p+p)%p;
printf("%I64d\n",xx);
}
else printf("Impossible\n");
}
return 0;
}

POJ 2115

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdlib>
#include<vector>
#include<stack>
#include<map>
using namespace std;
typedef long long ll; ll extend_gcd(ll a,ll b,ll &x,ll &y)
{ //return d=gcd(a,n);
if(b==0)
{
x=1,y=0;
return a;
}
else
{
ll t=extend_gcd(b,a%b,x,y);
ll xx=x,yy=y;
x=yy;
y=xx-(a/b)*yy;
return t;
}
} int main()
{
ll A,B,C,k,x,y;
while(~scanf("%I64d %I64d %I64d %I64d",&A,&B,&C,&k))
{
if(A==0&&B==0&&C==0&&k==0) break;
ll a=C,b=B-A,n=(ll)1<<k; //n=2^k
ll d=extend_gcd(a,n,x,y); if(b%d!=0) //方程无解
printf("FOREVER\n");
else
{
x=(x*(b/d))%n; //x为方程ax=b(mod n)的最小解
x=(x%(n/d)+n/d)%(n/d); //x为方程ax=b(mod n)的最小整数解
printf("%I64d\n",x);
}
}
return 0;
}

POJ 2891

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll; void extend_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(b==0)
{
d=a;
x=1,y=0;
}
else
{
extend_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} int main()
{
int k;
ll a1,r1,a,r;
while(~scanf("%d",&k))
{
scanf("%I64d%I64d",&a1,&r1);
int flag=1;
for(int i=2;i<=k;i++)
{
scanf("%I64d%I64d",&a,&r);
ll d,x,y;
extend_gcd(a1,a,d,x,y);
if((r-r1)%d!=0)
flag=0;
ll p=a/d;
x=(r-r1)/d*x;
x=(x%p+p)%p;
r1=a1*x+r1;
a1=a1*(a/d);
}
if(flag)
printf("%I64d\n",r1);
else printf("-1\n");
}
return 0;
}

数学#扩展欧几里德 POJ 1061&2115&2891的更多相关文章

  1. 扩展欧几里德 POJ 1061

    欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...

  2. poj 1061 青蛙约会(扩展欧几里德)

    题目链接: http://poj.org/problem?id=1061 题目大意: 中文题目,题意一目了然,就是数据范围大的出奇. 解题思路: 假设两只青蛙都跳了T次,可以列出来不定方程:p*l + ...

  3. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  4. POJ 1061 青蛙的约会(扩展欧几里德)

    点我看题目 题意 : 中文题不详述. 思路 : 设经过s步后两青蛙相遇,则必满足(x+m*s)-(y+n*s) = K*L(k = 0,1,2....) 变形得:(n-m)*s+K*L = x-y ; ...

  5. POJ 2891 扩展欧几里德

    这个题乍一看跟剩余定理似的,但是它不满足两两互素的条件,所以不能用剩余定理,也是给了一组同余方程,找出一个X满足这些方程,如果找不到的话就输出-1 因为它不满足互素的条件,所以两个两个的合并,最后合成 ...

  6. POJ 1061 青蛙的约会(扩展欧几里德算法)

    题意:两只青蛙在同一个纬度上跳跃,给定每个青蛙的开始坐标和每秒跳几个单位,纬度长为L,求它们相遇的最短时间. 析:开始,一看只有一组数据,就想模拟一下,觉得应该不会超时,但是不幸的是TLE了,我知道这 ...

  7. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  8. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  9. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. GridView”的控件 必须放在具有 runat=server 的窗体标记内 “错误提示”

    在做导出数据到EXCEL程序中,出现了错误提示:类型“GridView”的控件“GridView1”必须放在具有 runat=server 的窗体标记 解决办法  重写 VerifyRendering ...

  2. CSS3学习之——【特殊属性】

    一.CSS3的一些特殊属性 1.1 text-shadow text-shadow曾经在css2中就出现过,但在css2.1版本中又被抛弃了,现在css3.0版本又重新捡回来了.这说明text-sha ...

  3. Git提交到多个远程仓库

    在已经习惯使用git同步写代码,github无疑是最的托管平台,但是国内由于"你懂的"原因,速度很慢,有时无法访问,于是想把自己的代码同步到多个不同的远程仓库备份. 我的主要仓库: ...

  4. Android 6.0之权限管理

    安卓6.0的权限体系分为非敏感权限和敏感权限,非敏感权限默认获取,可以手动关闭. 敏感权限必须由app在运行时动态申请.而存储读写空间权限是一个敏感权限,不是一个“很正常的必须权限”. 安卓并不是想要 ...

  5. 浙大pat1013题解

    1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...

  6. hdu 2149 Public Sale 简单博弈

    Problem Description 虽然不想,但是现实总归是现实,Lele始终没有逃过退学的命运,因为他没有拿到奖学金.现在等待他的,就是像FarmJohn一样的农田生涯.要种田得有田才行,Lel ...

  7. Java面试题及答案(基础122道,编码19道)

    JAVA相关基础知识1.面向对象的特征有哪些方面 1.抽象:抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问题,而只是选择其中的一部分,暂时 ...

  8. As input tri-stated

    前些日子正好看到了riple兄的<一波三折--危险的"未分配"引脚>一文,颇受启发.正好最近也遇上了类似的问题,也可谓一波三折,还好最后摆平了,要不煮熟的鸭子可就要飞了 ...

  9. 在mac安装numpy matplotlib scipy

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo; color: #000000; background-color: #fffff ...

  10. Java的设计模式----strategy(策略模式)

    设计模式: 一个程序员对设计模式的理解: “不懂”为什么要把很简单的东西搞得那么复杂.后来随着软件开发经验的增加才开始明白我所看到的“复杂”恰恰就是设计模式的精髓所在,我所理解的“简单”就是一把钥匙开 ...