bzoj 3333: 排队计划 解决问题的方法
【原标题】
3333: 排队计划
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 161 Solved: 71
[Submit][Status]
Description
.jpg)
Input

Output

Sample Input
160 163 164 161 167 160
2
3
Sample Output
3
1
HINT
.jpg)
Source
【分析】简述一下题目。N个数排成一列。每次指定一个位置P,然后把P~N中全部身高小于等于P的人都拎出来,排一遍序后再放进去。每次操作须要求一遍逆序对。
首先非常easy想到:每次选定一个位置P后,降低的逆序对数量就是P~N中满足要求的人原来构成的逆序对——并且当操作完毕之后。这些人将永远不会产生逆序对了。
考虑到这种性质,我们能够维护一个数的F[i],表示从I这个位置開始的逆序对数量。(我们并不关心某个位置某一个时刻的值是多少)然后我们用一个线段树维护i~N中的最小值。每次操作寻找P~N的最小值。假设是满足要求的且位置是X,那么我们就把f[x]置为0,然后能够把x位置的数置为无穷大。之后继续寻找,直到找不到为止。由于每一个数仅仅会最多被更新一次,所以效率均摊是NlogN的。
【代码】
#include<cstdio>
#include<algorithm>
#define N 500005
#define INF 1000000005
#define Lo(x) (x&-x)
using namespace std;
typedef long long LL;LL ans=0;
struct Tree{int l,r,min,wh;}a[N*3];
int tree[N];//pos P in array to the tree
int pos[N*4];//pos P int tree to the array
int f[N],data[N],c[N],n,cnt,x,i,opt,P,ord,size,now,L,R;
struct array{int x,id;}uni[N];
inline int cmp(const array &a,const array &b){return a.x<b.x;}
inline int ask(int x){int s=0;for (;x;x-=Lo(x)) s+=c[x];return s;}
inline void add(int x){for (;x<=n;x+=Lo(x)) c[x]++;}
void build(int k,int l,int r)
{
a[k].l=l;a[k].r=r;
if (l==r) {a[k].min=data[l];pos[k]=l;tree[l]=k;a[k].wh=k;return;}
int mid=(l+r)>>1;
if (l<=mid) build(k<<1,l,mid);
if (r>mid) build(k<<1|1,mid+1,r);
if (a[k<<1].min<a[k<<1|1].min) a[k].min=a[k<<1].min,a[k].wh=a[k<<1].wh;
else a[k].min=a[k<<1|1].min,a[k].wh=a[k<<1|1].wh;
}
int query(int k)
{
if (L<=a[k].l&&a[k].r<=R) return a[k].wh;
int mid=(a[k].l+a[k].r)>>1,resl=0,resr=0;
if (L<=mid) resl=query(k<<1);
if (R>mid) resr=query(k<<1|1);
if (!resl) return resr;if (!resr) return resl;
return (a[resl].min<a[resr].min)? resl:resr;
}
void update(int k)
{
if (a[k].l==a[k].r) {a[k].min=INF;a[k].wh=k;return;}
int mid=(a[k].l+a[k].r)>>1;
if (ord<=mid) update(k<<1);else update(k<<1|1);
if (a[k<<1].min<a[k<<1|1].min) a[k].min=a[k<<1].min,a[k].wh=a[k<<1].wh;
else a[k].min=a[k<<1|1].min,a[k].wh=a[k<<1|1].wh;
}
int main()
{
read(n);read(opt);//读入优化略去
for (i=1;i<=n;i++) read(x),uni[i]=(array){x,i};
sort(uni+1,uni+n+1,cmp);
for (i=1;i<=n;i++)
data[uni[i].id]=(uni[i].x==uni[i-1].x)?cnt:++cnt;
for (i=n;i;i--)
f[i]=ask(data[i]-1),add(data[i]),ans+=(LL)f[i];
build(1,1,n);printf("%lld\n",ans);
while (opt--)
{
read(P);now=a[tree[P]].min;
while (now<INF)
{
L=P;R=n;ord=query(1);size=a[ord].min;
if (size>now) break;ord=pos[ord];
ans-=(LL)f[ord];f[ord]=0;update(1);
}
printf("%lld\n",ans);
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
bzoj 3333: 排队计划 解决问题的方法的更多相关文章
- BZOJ 3333 排队计划 树状数组+线段树
题目大意:给定一个序列.每次选择一个位置,把这个位置之后全部小于等于这个数的数抽出来,排序,再插回去,求每次操作后的逆序对数 首先我们每一次操作 对于这个位置前面的数 因为排序的数与前面的数位置关系不 ...
- 解决问题的方法=>现象-->原因-->方案-->方案的优缺点
解决问题的方法=>现象-->原因-->方案-->方案的优缺点
- 访问 IIS 元数据库失败解决问题的方法
近日调试一Asp.net程序,出现了“访问 IIS 元数据库失败”的错误信息,最后经过搜索发现了解决问题的方法. 解决方法如下: 1.依次点击“开始”-“运行”. 2.在“运行”栏内输入 “C:\WI ...
- 【BZOJ3333】排队计划 树状数组+线段树
[BZOJ3333]排队计划 Description Input Output Sample Input 6 2 160 163 164 161 167 160 2 3 Sample Output 6 ...
- [bzoj 1758] 重建计划
bzoj 1758 重建计划 题意: 给定一棵有边权的树和两个数 \(L, R (L\leq R)\),求一条简单路径,使得这条路径经过的边数在 \(L, R\) 之间且路径经过的边的边权的平均值最大 ...
- Selenium私房菜系列10 -- 我遇到的问题及解决问题的方法
Selenium私房菜系列10 -- 我遇到的问题及解决问题的方法
- Selenium私房菜系列9 -- 我遇到的问题及解决问题的方法
Selenium私房菜系列10 -- 我遇到的问题及解决问题的方法
- 【bzoj 3333】排队计划(线段树)
n个数,求一次逆序对.接着有m次修改操作,把每次输入的位置p的数之后<=它的数取出来,从小到大排序后再放回空位里,求逆序对.(N,M<=500,000 , Ai<=10^9)思路:1 ...
- 边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法
[原标题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1998 Solved: 816 [id=10 ...
随机推荐
- 使用COM提供SafeArray数据
在前一篇博文<读取SafeArray数据>我们介绍了C#读取安全数组.那么我们的COM怎么编写呢? 1. 定义SAFEARRAY变量 SAFEARRAY *pSArray = NULL; ...
- uboot启动阶段修改启动参数方法及分析
作者:围补 本来启动方式这节不是什么复杂的事儿,不过想简单的说清楚明白,还真是不知道怎么组织.毕竟文字跟有声语言表达有别.但愿简单的东西别让我讲的太复杂! Arm板系统文件一般有三个——bootloa ...
- yum 安装软件时报错
报错信息 Another app is currently holding the yum lock; waiting for it to exit 处理方法 rm -rf /var/run/yum. ...
- CentOS 7 安装MySql Server 5.6
1. 安装MySql Server 在/etc/yum.repos.d/目录下添加以下文件mysql-community.repo文件,内容如下: [mysql56-community] name=M ...
- As long as Binbin loves Sangsang
题目连接 题意: 给定一个无向图,每一个边有两个属性.长度和一个字母'L','O','V'.'E'中的一个.从1点開始到达n点,每次必须依照L -> O -> V -> E -> ...
- 作为一个.net程序猿,需要掌握这些有点前途的人才,一些开发---Shinepans
1.基础 C#基础 参考书目: <c#入门经典> <ASP.NET揭秘> IIS HTML ...
- zoj 3822 Domination (可能性DP)
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...
- 黄聪:Microsoft Enterprise Library 5.0 系列教程(五) Data Access Application Block
原文:黄聪:Microsoft Enterprise Library 5.0 系列教程(五) Data Access Application Block 企业库数据库访问模块通过抽象工厂模式,允许用户 ...
- windows phone 三种数据共享的方式(8)
原文:windows phone 三种数据共享的方式(8) 本节实现的内容是数据共享,实现的效果描述:首先是建立两个页面,当页面MainPage通过事件导航到页面SecondPage是,我们需要将Ma ...
- 开源Office Word——DocX
1.前言 请阅读前请看以下这位大神的文章 http://www.cnblogs.com/asxinyu/archive/2013/02/22/2921861.html 另附两个附件 1.DocX.DL ...