uva 11324 The Largest Clique(图论-tarjan,动态规划)
Problem B: The Largest Clique
Given a directed graph G, consider the following transformation. First, create a new graph T(G) to have the same vertex set as G. Create a directed edge between two vertices u and v in T(G) if
and only if there is a path between u and v in G that follows the directed edges only in the forward direction. This graph T(G) is often called the transitive closure of G.
We define a clique in a directed graph as a set of vertices U such that for any two vertices u and v in U, there is a directed edge either from u to v or
from v to u (or both). The size of a clique is the number of vertices in the clique.
The number of cases is given on the first line of input. Each test case describes a graph G. It begins with a line of two integers n and m, where 0 ≤ n ≤ 1000 is the number of
vertices of G and 0 ≤ m ≤ 50,000 is the number of directed edges of G. The vertices of G are numbered from 1 to n. The following m lines contain two distinct integers u and v between 1
and n which define a directed edge from u to v in G.
For each test case, output a single integer that is the size of the largest clique in T(G).
Sample input
1
5 5
1 2
2 3
3 1
4 1
5 2
Output for sample input
4
Zachary Friggstad
题目大意:
T组測试数据。给一张有向图G。求一个结点数最大的结点集,使得该结点中随意两个结点 u 和 v满足:要么 u 能够到达 v。 要么 v 能够到达 u(u 和 v 相互可达也能够)。
解题思路:
”同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图。让每一个SCC结点的权等于它的结点数,则题目转化为求SCC图上权最大的路径。因为SCC图是一个 DAG, 能够用动态规划求解。
“
解题代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std; const int maxn=1100;
const int maxm=51000; struct edge{
int u,v,next;
edge(int u0=0,int v0=0){
u=u0;v=v0;
}
}e[maxm]; int n,m,head[maxn],dfn[maxn],low[maxn],mark[maxn],w[maxn],color[maxn],dp[maxn],cnt,nc,index;
vector <int> vec;
vector <vector<int> > dfsmap; void addedge(int u,int v){
e[cnt]=edge(u,v);e[cnt].next=head[u];head[u]=cnt++;
} void input(){
cnt=nc=index=0;
scanf("%d%d",&n,&m);
vec.clear();
for(int i=0;i<=n;i++){
w[i]=dfn[i]=0;
mark[i]=false;
color[i]=dp[i]=head[i]=-1;
}
int u,v;
while(m-- >0){
scanf("%d%d",&u,&v);
addedge(u,v);
}
} void tarjan(int s){
dfn[s]=low[s]=++index;
mark[s]=true;
vec.push_back(s);
for(int i=head[s];i!=-1;i=e[i].next){
int d=e[i].v;
if(!dfn[d]){
tarjan(d);
low[s]=min(low[d],low[s]);
}else if(mark[d]){
low[s]=min(low[s],dfn[d]);
}
}
if(dfn[s]==low[s]){
nc++;
int d;
do{
d=vec.back();
vec.pop_back();
color[d]=nc;
mark[d]=false;
w[nc]++;
}while(d!=s);
}
} int DP(int s){
if(dp[s]!=-1) return dp[s];
int ans=w[s];
for(int i=0;i<dfsmap[s].size();i++){
int d=dfsmap[s][i];
if(DP(d)+w[s]>ans) ans=DP(d)+w[s];
}
return dp[s]=ans;
} void solve(){
for(int i=1;i<=n;i++){
if(!dfn[i]) tarjan(i);
}
dfsmap.clear();
dfsmap.resize(nc+1);
for(int i=0;i<cnt;i++){
int x=color[e[i].u],y=color[e[i].v];
if(x!=y){
dfsmap[x].push_back(y);
//cout<<x<<"->"<<y<<endl;
}
}
int ans=0;
for(int i=1;i<=nc;i++){
if(DP(i)>ans) ans=DP(i);
//cout<<i<<" "<<ans<<endl;
}
printf("%d\n",ans);
} int main(){
int t;
scanf("%d",&t);
while(t-- >0){
input();
solve();
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
uva 11324 The Largest Clique(图论-tarjan,动态规划)的更多相关文章
- uva 11324 The Largest Clique (Tarjan+记忆化)
/*每个环 要么不选 要么全选 可缩点 就得到一个GAD图 然后搞搞算出最大路径*/ #include<iostream> #include<cstdio> #include& ...
- UVA 11324 - The Largest Clique(强连通分量+缩点)
UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...
- uva 11324 The Largest Clique
vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...
- uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...
- UVA 11324.The Largest Clique tarjan缩点+拓扑dp
题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- UVA 11324 The Largest Clique(缩点+DAG上的dp)
求最大团.和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可. 同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零) ...
- UVA 11324 The Largest Clique (强连通分量,dp)
给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...
- Uva 11324 The Largest Clique【强连通 DAG动规 spfa】
白书上的例题 做一遍tarjan后,缩点,每一个scc节点的权为它的结点数,做一次DAG上的动规,求出路径上的最大点权和,就可以了 #include<cstdio> #include< ...
随机推荐
- Dubbo与Zookeeper、SpringMVC整合和使用(负载均衡、容错)(转)
互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的.现在核心业务抽取出来,作为独立的服务,使 ...
- Ubuntu 8.04下安装DB2方法
參考文献: How-to: Ubuntu 7.10 Server x86 32-bit and DB2 Express-C v9.5 DB2 v9.7 Infomation Center 场景:在IB ...
- Wix打包系列(五) 部署数据库
原文:Wix打包系列(五) 部署数据库 很多人在使用vs进行打包的时候,经常会为数据库部署的问题犯愁,即便是重写Installer类的方法,也不是很可靠方便,下面我们来看看在wix中如何部署数据库. ...
- asp.net操作word的表格
近日开发中用户要求实现导出数据为Word,本来想使用html保存为word的实现,但因用户要求样式很高,使用html不好控制,并且导出中包括图片,使用页面导出时图片还是一个路径,不能把图片包括在wor ...
- hdu 4472 Count (2012 ACM-ICPC 成都现场赛)
递推,考虑到一n可以由i * j + 1组合出来,即第二层有j个含有i个元素的子树...然后就可以了.. #include<algorithm> #include<iostream& ...
- eclipse3.1.1汉化版安装
确认安装好jdk以后,下载eclipse3.1.1及多语言包eclipse3.1.1 下载地址 http://eclipse.areum.biz/downloads/drops/R-3.1.1-2 ...
- duilib底层机制剖析:窗口类与窗口句柄的关联
转载请说明原出处.谢谢~~ 看到群里朋友有人讨论WTL中的thunk技术,让我联想到了duilib的类似技术. 这些技术都是为了解决c++封装的窗口类与窗口句柄的关联问题. 这里是三篇关于thunk技 ...
- c++ 按行读取txt文本
CStdioFile 类的声明保存在 afx.h 头文件中. CStdioFile 类继承自 CFile 类, CStdioFile 对象表示一个用运行时的函数 fopen 打开的 c 运行时的流式文 ...
- Storm具体解释一、Storm 概述
一.Storm概述 Storm是一个分布式的.可靠的.零失误的流式数据处理系统. 它的工作就是委派各种组件分别独立的处理一些简单任务.在Storm集群中处理输入流的是Spout组件,而Spo ...
- zoj 3822 Domination(2014牡丹江区域赛D称号)
Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Judge Edward is the headm ...