最短路,自适应$Simpson$积分。

看了别人的题解才知道有个东西叫自适应$Simpson$积分。

有这样一个积分公式:$\int_a^b {f(x)dx}  \approx \frac{{b - a}}{6}\left[ {f(a) + 4f\left( {\frac{{a + b}}{2}} \right) + f(b)} \right]$。这个东西用于计算不方便直接积分的时候的近似积分。

由于直接套公式会与实际有很大偏差,有一个改进:

要求$[L,R]$的积分,先令$m = \frac{{L + R}}{2}$,根据上面的公式,求出$[L,R]$的公式值${s_0}$,以及$[L,m]$的公式值${s_1}$,$[m,R]$的公式值${s_2}$。

如果${s_0}$与${s_1} + {s_2}$很接近,那么可以认为$[L,R]$的积分就是${s_0}$;否则进行递归,分别求$[L,m]$的积分和$[m,R]$的积分。

知道了这个东西之后,这题就变成水题了......

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} int n,m,T;
struct Edge{int u,v,c,d,nx;}e[];
int h[],sz; void add(int u,int v,int c,int d)
{
e[sz].u=u; e[sz].v=v; e[sz].c=c; e[sz].d=d;
e[sz].nx=h[u]; h[u]=sz++;
} double SPFA(double x)
{
double dis[]; bool flag[];
for(int i=;i<=n;i++) dis[i]=999999999999.0;
memset(flag,,sizeof flag);
queue<int>Q; flag[]=; Q.push(); dis[]=;
while(!Q.empty())
{
int top=Q.front(); Q.pop(); flag[top]=;
for(int i=h[top];i!=-;i=e[i].nx)
{
if(dis[top]+e[i].c*x+e[i].d<dis[e[i].v])
{
dis[e[i].v]=dis[top]+e[i].c*x+e[i].d;
if(flag[e[i].v]==)
{
flag[e[i].v]=;
Q.push(e[i].v);
}
}
}
}
return dis[n];
} double get(double L,double R)
{
return (R-L)*(SPFA(L)+*SPFA((L+R)/)+SPFA(R))/;
} double Ans(double L,double R)
{
double m=(L+R)/;
double s0,s1,s2;
s0=get(L,R); s1=get(L,m); s2=get(m,R);
if(fabs(s0-(s1+s2))<=eps) return s0;
else return Ans(L,m)+Ans(m,R);
} int main()
{
while(~scanf("%d%d%d",&n,&m,&T))
{
memset(h,-,sizeof h); sz=;
for(int i=;i<=m;i++)
{
int u,v,c,d; scanf("%d%d%d%d",&u,&v,&c,&d);
add(u,v,c,d);
}
printf("%.8lf\n",Ans(,1.0*T)/T);
}
return ;
}

CSU 1806 Toll的更多相关文章

  1. 【最短路】【数学】CSU 1806 Toll (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1806 题目大意: N个点M条有向边,给一个时间T(2≤n≤10,1≤m≤n(n-1), ...

  2. CSU 1806 Toll 自适应simpson积分+最短路

    分析:根据这个题学了一发自适应simpson积分(原来积分还可以这么求),然后就是套模板了 学习自适应simpson积分:http://blog.csdn.net/greatwall1995/arti ...

  3. csu 1806 & csu 1742 (simpson公式+最短路)

    1806: Toll Time Limit: 5 Sec  Memory Limit: 128 MB  Special JudgeSubmit: 256  Solved: 74[Submit][Sta ...

  4. [CSU1806]Toll

    题目:Toll 传送门:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1806 题目简述:给定n个点m条有向边的有向图,每条边的花费是$b_i ...

  5. csu 1812: 三角形和矩形 凸包

    传送门:csu 1812: 三角形和矩形 思路:首先,求出三角形的在矩形区域的顶点,矩形在三角形区域的顶点.然后求出所有的交点.这些点构成一个凸包,求凸包面积就OK了. /************** ...

  6. CSU 1503 点到圆弧的距离(2014湖南省程序设计竞赛A题)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503 解题报告:分两种情况就可以了,第一种是那个点跟圆心的连线在那段扇形的圆弧范围内,这 ...

  7. CSU 1120 病毒(DP)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1120 解题报告:dp,用一个串去更新另一个串,递推方程是: if(b[i] > a ...

  8. CSU 1116 Kingdoms(枚举最小生成树)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 解题报告:一个国家有n个城市,有m条路可以修,修每条路要一定的金币,现在这个国家只 ...

  9. CSU 1113 Updating a Dictionary(map容器应用)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1113 解题报告:输入两个字符串,第一个是原来的字典,第二个是新字典,字典中的元素的格式为 ...

随机推荐

  1. Unknown

    鉴于自己的直觉总是很准,所以这次再相信一次好了 T1:我觉得极有可能考到的是 1.对于栈,队列的模拟: 2.数论(不是像gcd那样的题目,而是加法原理乘法原理斥容,或是极具数学推导的东西,当然有可能用 ...

  2. AHOI1997彩旗飘飘 VIJOS1097合并果子(noip2007)

    AHOI彩旗飘飘 这是一题类似于排列组合的题目吧...递推状态 数组f[100][100][100][2];表示红旗数目,黄旗数目,颜色改变的次数,末尾的旗的颜色(0为黄,1为红) 之后就是如何写递推 ...

  3. 通过Func 委托理解委托和匿名方法及Lambda 表达式

    Func<T, TResult> 委托 封装一个具有一个参数并返回 TResult 参数指定的类型值的方法. 命名空间: System 程序集: mscorlib(在 mscorlib.d ...

  4. Load ContextCLR 探测

    目录 背景Load ContextCLR 探测过程弱签名程序集的探测过程强签名程序集的探测过程Default ContextLoad-From ContextNo ContextRelfection- ...

  5. Best Cow Line(POJ No.3617)

    问题: 链接:http://poj.org/problem?id=3617 思路: 按照字典序比较S和将S反转后的字符串S' 如果S较小,就从S的开头取出一个字符,加到T的末尾(更新下标值) 如果S’ ...

  6. Jenkins中关于一些插件的使用

    Jenkins中关于一些插件的使用方法 最近在为公司搭建CI平台过程中,以及在具体项目实施过程中使用过的一些插件的具体用法: 1. ant插件 这个插件可能是我们最为经常使用的,若构建脚本是使用bui ...

  7. Mobile页面项目总结

    项目过去个把月了,一直没有写些东西总结下,这次借着年后的空隙,将当时记录下来的几个点回顾一下. 今明的布局:position技巧 每当看到类似横向并排布局的时候,总是想起定宽浮动,和下面讲到的列表并排 ...

  8. No object in the CompoundRoot has a publicly accessible property named

    No object in the CompoundRoot has a publicly accessible property named 'typeid' (no setter could be ...

  9. 编程实战——电影管理器之界面UI及动画切换

    编程实战——电影管理器之界面UI及动画切换 在前文“编程实战——电影管理器之利用MediaInfo获取高清视频文件的相关信息”中提到电影管理器的目的是方便播放影片,在想看影片时不需要在茫茫的文件夹下找 ...

  10. 迷你MVVM框架 avalonjs 0.82发布

    迷你MVVM框架 avalonjs 0.82发布 本版本最大的改进是启用全新的parser. parser是用于干什么的?在视图中,我们通过绑定属性实现双向绑定,比如ms-text="fir ...