最短路,自适应$Simpson$积分。

看了别人的题解才知道有个东西叫自适应$Simpson$积分。

有这样一个积分公式:$\int_a^b {f(x)dx}  \approx \frac{{b - a}}{6}\left[ {f(a) + 4f\left( {\frac{{a + b}}{2}} \right) + f(b)} \right]$。这个东西用于计算不方便直接积分的时候的近似积分。

由于直接套公式会与实际有很大偏差,有一个改进:

要求$[L,R]$的积分,先令$m = \frac{{L + R}}{2}$,根据上面的公式,求出$[L,R]$的公式值${s_0}$,以及$[L,m]$的公式值${s_1}$,$[m,R]$的公式值${s_2}$。

如果${s_0}$与${s_1} + {s_2}$很接近,那么可以认为$[L,R]$的积分就是${s_0}$;否则进行递归,分别求$[L,m]$的积分和$[m,R]$的积分。

知道了这个东西之后,这题就变成水题了......

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} int n,m,T;
struct Edge{int u,v,c,d,nx;}e[];
int h[],sz; void add(int u,int v,int c,int d)
{
e[sz].u=u; e[sz].v=v; e[sz].c=c; e[sz].d=d;
e[sz].nx=h[u]; h[u]=sz++;
} double SPFA(double x)
{
double dis[]; bool flag[];
for(int i=;i<=n;i++) dis[i]=999999999999.0;
memset(flag,,sizeof flag);
queue<int>Q; flag[]=; Q.push(); dis[]=;
while(!Q.empty())
{
int top=Q.front(); Q.pop(); flag[top]=;
for(int i=h[top];i!=-;i=e[i].nx)
{
if(dis[top]+e[i].c*x+e[i].d<dis[e[i].v])
{
dis[e[i].v]=dis[top]+e[i].c*x+e[i].d;
if(flag[e[i].v]==)
{
flag[e[i].v]=;
Q.push(e[i].v);
}
}
}
}
return dis[n];
} double get(double L,double R)
{
return (R-L)*(SPFA(L)+*SPFA((L+R)/)+SPFA(R))/;
} double Ans(double L,double R)
{
double m=(L+R)/;
double s0,s1,s2;
s0=get(L,R); s1=get(L,m); s2=get(m,R);
if(fabs(s0-(s1+s2))<=eps) return s0;
else return Ans(L,m)+Ans(m,R);
} int main()
{
while(~scanf("%d%d%d",&n,&m,&T))
{
memset(h,-,sizeof h); sz=;
for(int i=;i<=m;i++)
{
int u,v,c,d; scanf("%d%d%d%d",&u,&v,&c,&d);
add(u,v,c,d);
}
printf("%.8lf\n",Ans(,1.0*T)/T);
}
return ;
}

CSU 1806 Toll的更多相关文章

  1. 【最短路】【数学】CSU 1806 Toll (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1806 题目大意: N个点M条有向边,给一个时间T(2≤n≤10,1≤m≤n(n-1), ...

  2. CSU 1806 Toll 自适应simpson积分+最短路

    分析:根据这个题学了一发自适应simpson积分(原来积分还可以这么求),然后就是套模板了 学习自适应simpson积分:http://blog.csdn.net/greatwall1995/arti ...

  3. csu 1806 & csu 1742 (simpson公式+最短路)

    1806: Toll Time Limit: 5 Sec  Memory Limit: 128 MB  Special JudgeSubmit: 256  Solved: 74[Submit][Sta ...

  4. [CSU1806]Toll

    题目:Toll 传送门:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1806 题目简述:给定n个点m条有向边的有向图,每条边的花费是$b_i ...

  5. csu 1812: 三角形和矩形 凸包

    传送门:csu 1812: 三角形和矩形 思路:首先,求出三角形的在矩形区域的顶点,矩形在三角形区域的顶点.然后求出所有的交点.这些点构成一个凸包,求凸包面积就OK了. /************** ...

  6. CSU 1503 点到圆弧的距离(2014湖南省程序设计竞赛A题)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503 解题报告:分两种情况就可以了,第一种是那个点跟圆心的连线在那段扇形的圆弧范围内,这 ...

  7. CSU 1120 病毒(DP)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1120 解题报告:dp,用一个串去更新另一个串,递推方程是: if(b[i] > a ...

  8. CSU 1116 Kingdoms(枚举最小生成树)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 解题报告:一个国家有n个城市,有m条路可以修,修每条路要一定的金币,现在这个国家只 ...

  9. CSU 1113 Updating a Dictionary(map容器应用)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1113 解题报告:输入两个字符串,第一个是原来的字典,第二个是新字典,字典中的元素的格式为 ...

随机推荐

  1. Maven-01 安装maven

      maven是apache的一个开源项目.用于管理java项目的构建等.

  2. 重拾C

    重拾C,一天一点点_10 来博客园今天刚好两年了,两年前开始学编程. 忙碌近两个月,项目昨天上线了,真心不容易,也不敢懈怠,接下来的问题会更多.这两天调试服务器,遇到不少麻烦. 刚出去溜达了一下,晚上 ...

  3. 算法打基础——顺序统计(找第k小数)

    这次主要是讲如何在线性时间下找n个元素的未排序序列中第k小的数.当然如果\(k=1 or k=n\),即找最大最小 数,线性时间内遍历即可完成,当拓展到一般,如中位数时,相关算法就值得研究了.这里还要 ...

  4. 用django搭建一个简易blog系统(翻译)(三)

    06. Connecting the Django admin to the blog app Django 本身就带有一个应用叫作Admin,而且它是一个很好的工具 在这一部分,我们将要激活admi ...

  5. 使用 Entity Framework Code First

    使用 Entity Framework Code First 在家闲着也是闲着,继续写我的[ASP.NET MVC 小牛之路]系列吧.在该系列的上一篇博文中,在显示书本信息列表的时候,我们是在程序代码 ...

  6. A*算法&博弈树α-β剪枝

    A*算法&博弈树α-β剪枝 A*算法/博弈树 前阵子考试学了A*算法.博弈树和回溯,自己真是愚蠢至极,根本没就搞明白这些,所以对于这些算法问道的话就不能说清楚,也记不住,所以才有了这篇笔记.在 ...

  7. [Android笔记1]Activity+Layout+Button

    线性布局(LinearLayout)是指view对象在父view中可按水平或垂直方向线性排列. 相对布局(RelativeLayout)是指view对象的排列依赖于各对象之间的相对位置. 下面是展示两 ...

  8. linux c编程获得当前进程的进程名和执行路径

    如何得到当前进程的进程名和执行路径.写了个程序分享一下. [sam@hzhsan test]$ more test_processname.cpp #include <limits.h> ...

  9. java 逆波兰表达式

    最近想把这破机 装成WIN7 想想还是算了 ...  反正用的机会也不多. 不过 发现了一些 想念的东西 从前的作业. 从前的记忆. package org.lmz; import java.util ...

  10. Dede推荐文章与热点文章不显示?

    )先看看,id 文档ID,content 标签最终内容(修改此变量后必须更新系统缓存)是不是填写的id: 进入后台->系统->基本参数设置->性能选项->id 文档ID,con ...