论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- MobileNet由Google提出的一种新的卷积计算方法,旨在加速卷积计算过程。
- 为了减小网络模型大小,提出了两种比较暴力的裁剪方法。
(1) 直接对channel进行裁剪,这种随机砍掉一些channel,也太暴力了吧,砍多了效果肯定不好,想想都知道。
(2) 减少输入图像的分辨率,也就是减小输入的尺寸大小。
- 我们还是关注新的卷积计算方法,要做压缩的话,还是另辟蹊径。

1. Full convolution VS. Depthwise separable convolution
1.1 Full convolution

- M表示输入的channel, N表示输出的channel,Dk表示kernel size.
- 我们可以看到输出的每一个channel,都跟所有的输入channel有关,也就是说,对于输出的一个channel,都是M个kernel与M个channel卷积以后的求和结果。
- 差别就在这里!在depthwise separable中,每一个输出的channel,只和一个输入的channel有关。
1.2 Depthwise separable convolution

输入M个channel,那么输出也是M个channel,每一个channel都是由一个kernel在一个channel卷积以后得到的结果,不在是和所有的输入相关了。这也就是为什么名字叫做depthwise separable(深度级的分离,channel的分离)。
但是我们发现输出只有M个channel,而我们想要输出N个channel,这个时候我们应该想到1*1的convolution,这个时候的卷积就是full convolution。这个时候输出的每一个channel都和输入有关了,相当于输入的加权求和。所以1x1的卷积有联合(combine)的作用。
2. 计算量对比
- 只要理解了两个的差别,不难算出计算直接的差别。

- Dk表示kernel size, M表示输入的channel,也就是feature map的个数,N表示输出的channel。Df表示feature map的大小,也就是width和height, 上面这个式子再一次验证了我们上面说的,输出的每一个channel都和输入的所有channel有关。

求和的左半部分,表示depthwise separable的计算量,可以看到输出为M个channel,每个输出channel只和一个channel有关。
求和的有半部分,表示1x1 pointwise convolution,可以看到每一个输出channel,都和M个输入有关(M个输入的加权求和)。
计算量较少比例

3. 模型压缩

上面公式可以看到直接对输入的M个channel进行的压缩(随机采样)

上面公式可以看到对不仅对输出的channel进行了采样,对输入图像的分辨率也进行了减小。
4. 对比实验
4.1 参数量的对比

4.2 实验结果

5. 实现
- Tensorflow的实现: https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md
- Caffe实现(trick): https://github.com/shicai/MobileNet-Caffe
(通过caffe 的group参数来实现depthwise的操作的,由于实现的问题和cuda/cudnn对其支持得不好,训练起来十分慢。前向预测时在CPU上的耗时大概是googlenet的70%。这个数据参考一篇博文的,未实践过。) - Pytorch实现:https://github.com/marvis/pytorch-mobilenet
6. 总结
- 根据实践经验的总结,这种新的卷积计算方式,对运算速度的改进还是比较明显的,精度影响不是很大,至于文中说的两个裁剪方法,我觉得还是慎重使用比较好。
- 现在市面上已经有很多裁剪方法了,没必要用这么暴力的进行裁剪来压缩模型大小。
论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)的更多相关文章
- [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...
- [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
- 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...
- 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析
目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...
- Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...
- 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读
2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...
- 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...
随机推荐
- 【Python爬虫】如何确定自己浏览器的User-Agent信息
User-Agent:简称UA,它是一个特殊的字符串头,可以使服务器识别客户使用的操作系统及版本.浏览器及版本等信息.在做爬虫时加上此信息,可以伪装为浏览器:如果不加,很可能会被识别出为爬虫. 那么如 ...
- vuex使用
1.装包:npm install vuex -S 2.引入:import Vuex from 'vuex' //这些都是写在man.js中 3.加载到Vue中:Vue.use(Vuex) 4 ...
- Hadoop DistributedCache分布式缓存的使用
做项目的时候遇到一个问题,在Mapper和Reducer方法中处理目标数据时,先要去检索和匹配一个已存在的标签库,再对所处理的字段打标签.因为标签库不是很大,没必要用HBase.我的实现方法是把标签库 ...
- Elasticsearch Java API—多条件查询(must)
多条件设置 //多条件设置 MatchPhraseQueryBuilder mpq1 = QueryBuilders .matchPhraseQuery("pointid",&qu ...
- [redis] 介绍安装
redis相关网站 官方网站:http://redis.io/ redis简介 官方介绍:http://redis.io/topics/introduction 百度百科:http://baike.b ...
- thinkphp input
变量修饰符 input函数支持对变量使用修饰符功能,可以更好的过滤变量. 用法如下: input('变量类型.变量名/修饰符'); 或者 Request::instance()->变量类型('变 ...
- C# 拓展方法实例
namespace BenJi{ class Program { static void Main(string[] args) { Console.WriteLine("你要调试程序吗?y ...
- yii2之创建管理员
第一步,使用迁移文件建表admin 先建立数据迁移文件: 小贴士,如果发现自己改错了,需要重新修改迁移文件 第二步,使用gii工具创建model 创建一个新的model,继承AdminAR,方便以后管 ...
- Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别 ...
- http://xx.xxx.xxx.xx:8080/把路径设置成http服务访问的形式
1.官网下载python安装包(eg:python-3.6.3-embed-win32),并解压文件 2.配置环境变量 3.cmd里查看python版本并设置服务路径 4. 访问查看