1、什么是T test?

t-test:比较数据的均值,告诉你这两者之间是否相同,并给出这种不同的显著性(即是否是因为偶然导致的不同)

The t test (also called Student’s T Test) compares two averages (means) and tells you if they
are different from each other. The t test also tells you how significant the differences are;In
other words it lets you know if those differences could have happened by chance.

例子:制药公司可能想测试一种新的抗癌药物,看看它是否能提高预期寿命。在实验中,总有一个对照组(给一组人服用安慰剂,或“糖丸”)。对照组的平均预期寿命为+5岁,而服用新药的组的平均预期寿命为+6岁。看来这种药可能有效。但这可能是一个巧合。为了验证这一点,研究人员将使用Student’s t-test来发现结果是否可以在整个人群中重复

Student’s T-tests can be used in real life to compare means. For example, a drug company may
want to test a new cancer drug to find out if it improves life expectancy. In an experiment,
there’s always a control group (a group who are given a placebo, or “sugar pill”). The control
group may show an average life expectancy of +5 years, while the group taking the new drug
might have a life expectancy of +6 years. It would seem that the drug might work. But it could
be due to a fluke. To test this, researchers would use a Student’s t-test to find out if the
results are repeatable for an entire population.

2、The T Score.

T Score:是两组之间的差异与组内差异的比值。t值越大,组间差异越大。t值越小,组间的相似性越大。t得分为3表示两个组之间的差异是它们内部差异的三倍。当您运行t测试时,t值越大,结果越有可能是可重复的

The t score is a ratio between the difference between two groups and the difference within the
groups. The larger the t score, the more difference there is between groups. The smaller the t
score, the more similarity there is between groups. A t score of 3 means that the groups are
three times as different from each other as they are within each other. When you run a t test,
the bigger the t-value, the more likely it is that the results are repeatable
  • A large t-score tells you that the groups are different.
  • A small t-score tells you that the groups are similar

3、T-Values and P-values

P-values:“足够大”有多大?每个t值都有一个p值。p值是样本数据的结果偶然发生的概率。p值从0%到100%。它们通常写成小数。例如,5%的p值是0.05。低p值是好的;它们表明您的数据不是偶然产生的。例如,p值为0.01意味着实验结果碰巧发生的概率只有1%。在大多数情况下,p值为0.05(5%)表示数据有效

How big is “big enough”? Every t-value has a p-value to go with it. A p-value is the probability
that the results from your sample data occurred by chance. P-values are from 0% to 100%.
They are usually written as a decimal. For example, a p value of 5% is 0.05. Low p-values are
good; They indicate your data did not occur by chance. For example, a p-value of .01 means
there is only a 1% probability that the results from an experiment happened by chance. In
most cases, a p-value of 0.05 (5%) is accepted to mean the data is valid.

4、main types of t-test

An Independent Samples t-test((also called the unpaired samples t test)) compares the means for two groups.
A Paired sample t-test(also called a correlated pairs t-test, a paired samples t test or dependent
samples t test) compares means from the same group at different times (say, one year apart).
A One sample t-test tests the mean of a single group against a known mean.

4.1、 Independent Samples t-test

独立样本t检验(又称未配对样本t检验)是t检验最常见的形式。它帮助您比较两组数据的方法。例如,你可以做一个t测试,看看男性和女性的平均测试成绩是否不同;测试回答了这个问题:“这些差异可能是随机产生的吗?”

前提是需要三个假设:独立假设、正态分布假设、方差同质性假设

  Assumption of Independence: you need two independent, categorical groups that represent
your independent variable. In the above example of test scores “males” or “females” would be
your independent variable.
Assumption of normality: the dependent variable should be approximately normally
distributed. The dependent variable should also be measured on a continuous scale. In the
above example on average test scores, the “test score” would be the dependent variable.
Assumption of Homogeneity of Variance: The variances of the dependent variable should be equal.

手动计算:Calculating an Independent Samples T Test By hand(https://www.statisticshowto.datasciencecentral.com/independent-samples-t-test/)

Sample question: Calculate an independent samples t test for the following data sets:

Data set A: 1,2,2,3,3,4,4,5,5,6
Data set B: 1,2,4,5,5,5,6,6,7,9

Step 1: Sum the two groups(求各自样品的总和):

A: 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6 = 35
B: 1 + 2 + 4 + 5 + 5 + 5 + 6 + 6 + 7 + 9 = 50

Step 2: Square the sums from Step 1(求各自样品总和的平方):

35 * 35= 1225
49 * 49 = 2401

Step 3: Calculate the meansfor the two groups:

A: (1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 6)/10 = 35/10 = 3.5
B: (1 + 2 + 4 + 5 + 5 + 5 + 6 + 6 + 7 + 9) = 50/10 = 5

Step 4: Square the individual scores and then add them up:
A: 11 + 22 + 22 + 33 + 33 + 44 + 44 + 55 + 55 + 66 = 145
B: 12 + 22 + 44 + 55 + 55 + 55 + 66 + 66 + 77 + 99 = 298

Step 5: Find the Degrees of freedom

(nA-1 + nB-1) =(10-1)+(10-1)= 18

Step 6: Insert your numbers into the following formula and solve:

带入求值结果为-1.69

(ΣA)2: Sum of data set A, squared (Step 2).
(ΣB)2: Sum of data set B, squared (Step 2).
μA: Mean of data set A (Step 3)
μB: Mean of data set B (Step 3)
ΣA2: Sum of the squares of data set A (Step 4)
ΣB2: Sum of the squares of data set B (Step 4)
nA: Number of items in data set A
nB: Number of items in data set B

Step 7: Look up your degrees of freedom (Step 5) in the t-table(https://www.statisticshowto.datasciencecentral.com/tables/t-distribution-table/).

If you don’t know what your alpha level is, use 5% (0.05).18 degrees of freedom at an alpha level of 0.05 = 2.10.

Step 8: Compare your calculated value (Step 6) to your table value (Step 7).

The calculated value of -1.79 is less than the cutoff of 2.10 from the table. Therefore p >0 .05.
As the p-value is greater than the alpha level, we cannot conclude that there is a difference
between means.

4.2、 A paired t test

配对t测试(也称为相关配对t测试、配对样本t测试或依赖样本t测试)是在依赖样本上运行t测试的地方。依赖的样本本质上是相连的—它们是同一个人或事物的测试。例如训练前后对同一个人进行两次测试;同一个人使用不同的仪器进行两次血压测量。

手动计算paired t test:https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/t-test/

小明前后两次考试:

score1: 3、 3、 3、12、15、16、17、19、23、24、32
score2: 20、13、13、20、29、32、23、20、25、15、30

Step 1: Subtract each Y score from each X score(每个Y分数减去每个X分数).

步骤2:将步骤1中的所有值相加

步骤3:将与步骤1的差异平方

步骤4:将所有与步骤3不同的平方相加

步骤5:用以下公式计算t-score:

ΣD: Sum of the differences (Sum of X-Y from Step 2)
ΣD2: Sum of the squared differences (from Step 4)
(ΣD)2: Sum of the differences (from Step 2), squared

Step 6: Subtract 1 from the sample size to get the degrees of freedom(计算自由度).

We have 11 items, so 11-1 = 10.

Step 7: Find the p-value in the t-table, using the degrees of freedom in Step 6.

If you don’t have a specified alpha level, use 0.05 (5%). For this sample problem, with df=10, the t-value is 2.228.

步骤8:比较步骤7(2.228)到计算t值(-2.74)的t表值(table表)。

在alpha水平为0.05时,计算的t值大于表值。p值小于alpha水平:p <0.05。我们可以拒绝均值之间没有差异的零假设。

5、参考网址

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/t-test/

https://www.statisticshowto.datasciencecentral.com/tables/t-distribution-table/

t检验,T Test (Student’s T-Test)的更多相关文章

  1. 连续型变量的推断性分析——t检验

    连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...

  2. SPSS t 检验

    在针对连续变量的统计推断方法中,最常用的是 t 检验和方差分析两种. t 检验,又称 student t 检验,主要用于样本含量较小(例如n<30),总体标准差未知的正态分布资料.它是用 t 分 ...

  3. R语言:常用统计检验

    统计检验是将抽样结果和抽样分布相对照而作出判断的工作.主要分5个步骤: 建立假设 求抽样分布 选择显著性水平和否定域 计算检验统计量 判定 -- 百度百科 假设检验(hypothesis test)亦 ...

  4. Javascript 面向对象编程

    Javascript是一个类C的语言,他的面向对象的东西相对于C++/Java比较奇怪,但是其的确相当的强大,在 Todd 同学的“对象的消息模型”一文中我们已经可以看到一些端倪了.这两天有个前同事总 ...

  5. JS面向对象教程

    初探 我们知道Javascript中的变量定义基本如下: var name = 'Chen Hao';; var email = 'haoel(@)hotmail.com'; var website ...

  6. 一种基于Welch's t检验的二元关系挖掘

    现实中常常需要挖掘两种因素之间的关联,Welch's t检验很适合其中的nomial-numerical的关系挖掘.比如天气状况对销量的影响,或者天气情况对交通流量的影响等等.我们可以按照下雨/不下雨 ...

  7. 转载:传说中的T检验

    第二周结束:传说中的T检验 小耿2014-01-21 10:58 本文和上一篇笔记一样:语言十分啰嗦.请大家忍耐…… 以前我不懂统计的时候(现在也不懂),只知道数据出来了要做三件事:1,检验一下数据是 ...

  8. 【论文笔记】使用SPSS 进行 T Test (T检验)

    从具有t值来看,你是在进行T检验.T检验是平均值的比较方法. T检验分为三种方法: 1. 单一样本t检验(One-sample t test),是用来比较一组数据的平均值和一个数值有无差异.例如,你选 ...

  9. 卡方分布 | t检验 | F检验 | 卡方检验 | 假设检验 | 各种检验持续总结

    Chi-square distribution introduction 这个视频真的好,完美地解释了卡方统计量是怎么来的! 我们有一个标准正态分布的总体,我们从其中抽一次,取该值的平方就是Q1统计量 ...

随机推荐

  1. json_encode 中文 null

    今天使用json_encode 结果中文变成了null 原来是编码的问题. 将编码由 GBK 转成utf-8的就可以了 iconv('gb2312','utf-8', '中文');

  2. 异步FIFO空满设计延迟问题

    由于设计的时候读写指针用了至少两级寄存器同步,同步会消耗至少两个时钟周期,势必会使得判断空或满有所延迟,这会不会导致设计出错呢? 异步FIFO通过比较读写指针进行满空判断,但是读写指针属于不同的时钟域 ...

  3. 基于Hadoop开发网络云盘系统架构设计方案第一稿

    引言 云计算技术的发展,各种网络云盘技术如雨后春笋,层出不穷,百度.新浪.网易都推出了自己的云盘系统,本文基于开源框架Hadoop设计实现了一套自己的网络云盘系统,方案为初步设计方案,不断完善中. 一 ...

  4. java操作Excel之POI(1)

    一.新建工作簿.sheet.单元格 public static void main(String[] args) throws Exception { Workbook wb = new HSSFWo ...

  5. CentOS 6.6下安装配置Tomcat环境

    本文转载至:http://www.linuxidc.com/Linux/2015-08/122234.htm 实验系统:CentOS 6.6_x86_64 实验前提:防火墙和selinux都关闭 实验 ...

  6. php中的释放语句unset和释放函数mysql_free_result()

    首先要强调的一点是unset在php中已经不再是一个函数了,既然不是函数,那么就没有了返回值,所以用的时候不能够用unset的返回值来做判断. 其次,在函数中,unset只能销毁局部变量,并不能销毁全 ...

  7. PyQt5系列教程

    PyQt5系列教程(一)Mac OS X下搭建Python3.5.1+PyQt5开发环境PyQt5系列教程(二)利用QtDesigner设计UI界面PyQt5系列教程(三)用py2exe进行程序打包P ...

  8. 收集的一些python基础教学博客

    =======python3学习链接======= Python 3 教程:http://www.runoob.com/python3/python3-tutorial.html 深入python3: ...

  9. UVA350-水题

    #include<iostream> using namespace std; int main() { int c = 0; int Z, L, I, M; while (cin > ...

  10. 今天练手了下mysqlbinlog,标记下

    1 首先查看是否开启了 bin log 登录mysql后  使用命令 show variables like "log_%"; show binary logs; 2  确认开启了 ...