hive的元数据存放在关系型数据库中,元数据中存储了hive中所有表格的信息,包括表格的名字,表格的字段,字段的类型,注释。这些信息分散的存放在各个表中,给定一个hive中的表格名字,查询这个表中含有的所有字段,使用如下的SQL语句:

mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dwd_medical_hospital_dd';
+-------+--------------------------------------+-------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+--------------------------------------+-------------+-----------+-------------+
| 603 | 地址 | address | string | 2 |
| 603 | 医院类型 | clean_type | string | 14 |
| 603 | 采集时间 | create_time | string | 10 |
| 603 | 所在大区 | extend_area | string | 13 |
| 603 | 所在城市 | extend_city | string | 11 |
| 603 | 所在省份 | extend_prov | string | 12 |
| 603 | 路线 | howtogo | string | 3 |
| 603 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 603 | 医院等级 | level | string | 4 |
| 603 | 医院名字 | name | string | 1 |
| 603 | 简介 | profiles | string | 7 |
| 603 | 区域ID/城市ID | prov_id | string | 5 |
| 603 | 资源配置量 | resouce | string | 8 |
| 603 | 电话 | telephone | string | 6 |
| 603 | 采集URL | url | string | 9 |
| 583 | 地址 | address | string | 2 |
| 583 | 医院类型 | clean_type | string | 14 |
| 583 | 采集时间 | create_time | string | 10 |
| 583 | 所在大区 | extend_area | string | 13 |
| 583 | 所在城市 | extend_city | string | 11 |
| 583 | 所在省份 | extend_prov | string | 12 |
| 583 | 路线 | howtogo | string | 3 |
| 583 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 583 | 医院等级 | level | string | 4 |
| 583 | 医院名字 | name | string | 1 |
| 583 | 简介 | profiles | string | 7 |
| 583 | 区域ID/城市ID | prov_id | string | 5 |
| 583 | 资源配置量 | resouce | string | 8 |
| 583 | 电话 | telephone | string | 6 |
| 583 | 采集URL | url | string | 9 |
+-------+--------------------------------------+-------------+-----------+-------------+
30 rows in set
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dws_info_doctor_dd';
+-------+----------+----------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+----------+----------------+-----------+-------------+
| 673 | 年龄 | age | string | 3 |
| 673 | 科室ID | department_id | string | 10 |
| 673 | 从诊年限 | diagnosis_time | string | 6 |
| 673 | 履历 | experience | string | 8 |
| 673 | 擅长疾病 | good | string | 5 |
| 673 | NULL | hosp_id | string | 11 |
| 673 | 主键ID | id | string | 0 |
| 673 | 医生名称 | name | string | 1 |
| 673 | 门诊量 | outpatient_num | string | 7 |
| 673 | 医生职称 | position | string | 2 |
| 673 | 评分 | score | string | 9 |
| 673 | 性别 | sex | string | 4 |
| 758 | 年龄 | age | string | 3 |
| 758 | 科室ID | department_id | string | 10 |
| 758 | 从诊年限 | diagnosis_time | string | 6 |
| 758 | 履历 | experience | string | 8 |
| 758 | 擅长疾病 | good | string | 5 |
| 758 | NULL | hosp_id | string | 11 |
| 758 | 主键ID | id | string | 0 |
| 758 | 医生名称 | name | string | 1 |
| 758 | 门诊量 | outpatient_num | string | 7 |
| 758 | 医生职称 | position | string | 2 |
| 758 | 评分 | score | string | 9 |
| 758 | 性别 | sex | string | 4 |
| 732 | 年龄 | age | string | 3 |
| 732 | 科室ID | department_id | string | 10 |
| 732 | 从诊年限 | diagnosis_time | string | 6 |
| 732 | 履历 | experience | string | 8 |
| 732 | 擅长疾病 | good | string | 5 |
| 732 | 主键ID | id | string | 0 |
| 732 | 医生名称 | name | string | 1 |
| 732 | 门诊量 | outpatient_num | string | 7 |
| 732 | 医生职称 | position | string | 2 |
| 732 | 评分 | score | string | 9 |
| 732 | 性别 | sex | string | 4 |
+-------+----------+----------------+-----------+-------------+
35 rows in set

hive元数据中相关的表格关系如下:

hive元数据研究的更多相关文章

  1. hive 元数据解析

    在使用Hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具. 要想还原建表DDL就必须从元数据入手,我们知道,hive的元数据并不存放在 ...

  2. 如何监听对 HIVE 元数据的操作

    目录 简介 HIVE 基本操作 获取 HIVE 源码 编译 HIVE 源码 启动 HIVE 停止 HIVE 监听对 HIVE 元数据的操作 参考文档 简介 公司有个元数据管理平台,会定期同步 HIVE ...

  3. spark on yarn模式下配置spark-sql访问hive元数据

    spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...

  4. Hive元数据启动失败,端口被占用

    org.apache.thrift.transport.TTransportException: Could not create ServerSocket on address 0.0.0.0/0. ...

  5. Hive实现自增序列及常见的Hive元数据问题处理

    Hive实现自增序列 在利用数据仓库进行数据处理时,通常有这样一个业务场景,为一个Hive表新增一列自增字段(比如事实表和维度表之间的"代理主键").虽然Hive不像RDBMS如m ...

  6. Hive——元数据表含义

    Hive--元数据表含义 1.VERSION   -- 查询版本信息   Field Type Comment   VER_ID bigint(20) ID主键   SCHEMA_VERSION va ...

  7. 大数据学习(11)—— Hive元数据服务模式搭建

    这一篇介绍Hive的安装及操作.版本是Hive3.1.2. 调整部署节点 在Hadoop篇里,我用了5台虚拟机来搭建集群,但是我的电脑只有8G内存,虚拟机启动之后卡到没法操作,把自己坑惨了. Hive ...

  8. 再谈Hive元数据如hive_metadata与Linux里MySQL的深入区别(图文详解)

    不多说,直接上干货! [bigdata@s201 conf]$ vim hive-site.xml [bigdata@s201 conf]$ pwd /soft/hive/conf [bigdata@ ...

  9. Hive元数据找回

    如果不小心删除了了hive的元数据文件(/user/hive/warehouse),只要先前core-site.xml文件中设置了fs.trash.interval属性就可以找回.hdfs会为用户创建 ...

随机推荐

  1. angularjs也支持script形式的template

    <script type="text/ng-template" id="name"> https://docs.angularjs.org/api/ ...

  2. 【Zookeeper】源码分析之请求处理链(二)之PrepRequestProcessor

    一.前言 前面学习了请求处理链的RequestProcessor父类,接着学习PrepRequestProcessor,其通常是请求处理链的第一个处理器. 二.PrepRequestProcessor ...

  3. 用 bottle.py 写了个简单的升级包上传

    可以当作一个 demo 来玩吧,在这里分享一下.里面涉及的内容包含了文件上传,cookie 设置和读取,重定向(redirect). from bottle import run, post, get ...

  4. Java多线程之创建线程的三种方式比较

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6560057.html  一:继承Thread类创建线程 1:继承Thread类定义线程子类: 2:重写run( ...

  5. Dynamic Lotusscript

    Introduction This short article gives an introduction to the underrated Execute method that is avail ...

  6. iOS12 Network框架 自签名证书认证

    发布时间:2018-09-21   技术:iOS12 xcode10 golang1.11   概述 iOS12 苹果发布了新的网络框架Network,可以更方便地操作底层网络通信了.使用TLS也很方 ...

  7. ios中ASIHTTPRequst的封装

    #import <Foundation/Foundation.h> #import "ASIHTTPRequest.h" #import "ASIDownlo ...

  8. iOS手势的综合运用

    //自定义一个VIEW封装手势功能 // CustormView.m // gesterDemoo // // Created by ganchaobo on 13-7-13. // Copyrigh ...

  9. xshell连接centos vi编辑器不能使用小键盘

    莫名其妙的本人的xshell,在vim编辑脚本的时候,右侧小键盘无法输出数字,输出的都是一些字母,而且还是一个字母占一行,太过艹蛋! 后来就按照正规的操作步骤,又重建了连接,居然发现正常了! 百思一虑 ...

  10. keras callback中的stop_training

    keras这个框架简洁优美,设计上堪称典范.而tensorflow就显得臃肿庞杂,混乱不清.当然,keras的周边部件比如callbacks.datasets.preprocessing有许多过度设计 ...