• Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example.

In tf.nn, there are 4 closely related 2d conv functions:

  • tf.nn.conv2d
  • tf.nn.conv2d_backprop_filter
  • tf.nn.conv2d_backprop_input
  • tf.nn.conv2d_transpose
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):
r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors. Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter / kernel tensor of shape
`[filter_height, filter_width, in_channels, out_channels]`, this op
performs the following: 1. Flattens the filter to a 2-D matrix with shape
`[filter_height * filter_width * in_channels, output_channels]`.
2. Extracts image patches from the input tensor to form a *virtual*
tensor of shape `[batch, out_height, out_width,
filter_height * filter_width * in_channels]`.
3. For each patch, right-multiplies the filter matrix and the image patch
vector. In detail, with the default NHWC format, output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k] Must have `strides[0] = strides[3] = 1`. For the most common case of the same
horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

Given out = conv2d(x, w) and the output gradient d_out:

  • Use tf.nn.conv2d_backprop_filter to compute the filter gradient d_w
  • Use tf.nn.conv2d_backprop_input to compute the filter gradient d_x
  • tf.nn.conv2d_backprop_input can be implemented by tf.nn.conv2d_transpose
  • All 4 functions above can be implemented by tf.nn.conv2d
  • Actually, use TF's autodiff is the fastest way to compute gradients

Long Answer

Now, let's give an actual working code example of how to use the 4 functions above to compute d_x and d_w given d_out. This shows how conv2dconv2d_backprop_filterconv2d_backprop_input, and conv2d_transpose are related to each other. Please find the full scripts here.

Computing d_x in 4 different ways:

# Method 1: TF's autodiff
d_x = tf.gradients(f, x)[0] # Method 2: manually using conv2d
d_x_manual = tf.nn.conv2d(input=tf_pad_to_full_conv2d(d_out, w_size),
filter=tf_rot180(w),
strides=strides,
padding='VALID') # Method 3: conv2d_backprop_input
d_x_backprop_input = tf.nn.conv2d_backprop_input(input_sizes=x_shape,
filter=w,
out_backprop=d_out,
strides=strides,
padding='VALID') # Method 4: conv2d_transpose
d_x_transpose = tf.nn.conv2d_transpose(value=d_out,
filter=w,
output_shape=x_shape,
strides=strides,
padding='VALID')

Computing d_w in 3 different ways:

# Method 1: TF's autodiff
d_w = tf.gradients(f, w)[0] # Method 2: manually using conv2d
d_w_manual = tf_NHWC_to_HWIO(tf.nn.conv2d(input=x,
filter=tf_NHWC_to_HWIO(d_out),
strides=strides,
padding='VALID')) # Method 3: conv2d_backprop_filter
d_w_backprop_filter = tf.nn.conv2d_backprop_filter(input=x,
filter_sizes=w_shape,
out_backprop=d_out,
strides=strides,
padding='VALID')

Please see the full scripts for the implementation of tf_rot180tf_pad_to_full_conv2dtf_NHWC_to_HWIO. In the scripts, we check that the final output values of different methods are the same; a numpy implementation is also available.

tensorflow 卷积/反卷积-池化/反池化操作详解的更多相关文章

  1. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

  2. jdbc连接池中c3p0的配置文件的详解以及在在java中如何使用

    <c3p0-config> <!-- 默认配置,如果没有指定则使用这个配置 --> <default-config> <property name=" ...

  3. opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用

    cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...

  4. CentOS Minimal版最小化安装后VMware联网详解

    最近想搞个mailman邮件列表,又不想在我常用的CentOS 6.4上做实验,怕破坏了环境,于是就想装个试验机,又嫌它占空间太大,于是找了半天发现CentOS 6.0的minimal版本最适合了,装 ...

  5. Windows里安装wireshark或者ethereal工具(包括汉化破解)(图文详解)

    不多说,直接上干货! https://www.wireshark.org/download.html 我这里,读取的是,来自于https://www.ll.mit.edu/ideval/data/19 ...

  6. Java学习笔记 线程池使用及详解

    有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程 ...

  7. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  8. 『TensorFlow』卷积层、池化层详解

    一.前向计算和反向传播数学过程讲解

  9. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

随机推荐

  1. Java NIO-3

    http://itindex.net/detail/55603-java-nio-%E6%8A%80%E6%9C%AF

  2. 基于.htaccess的Web Shell工具htshells

    基于.htaccess的Web Shell工具htshells   .htaccess文件是Apache服务器的配置文件.它负责相关目录下的网页配置.一旦用户获得修改该文件的权限,就可以基于该文件构建 ...

  3. python3.5 自带的虚拟环境使用

    首先我们要选择一个目录作为虚拟环境的目录, 这里选择c:\myenv cd myenv python -m venv . #在当前目录下创建虚拟环境 创建完成之后,myenv下会多出一些文件 进入sc ...

  4. poj 3071 概率dp

    转自:cxlove 题目:有2^n个队,相邻的两两打淘汰赛,,求最后哪个队夺冠的概率最大 dp[i][j]表示第i轮的时候,第j去支队伍赢的概率. 那么dp[i][j]的前提就是i-1轮的时候,j是赢 ...

  5. C# 实现IDisposable的模式

    来自MSDN官方文档:http://msdn.microsoft.com/en-us/library/system.configuration.provider.providercollection. ...

  6. VSCode换行符

    如果要显示换行符:\r\n 如果要替换显示出来的\n,替换上要用正则表达式,然后使用\r\n. 如果要直接换行,\n

  7. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

  8. How to update jQuery Mobile in Dreamweaver CS6

    来源:http://wpguru.co.uk/2013/01/how-to-update-jquery-mobile-in-dreamweaver-cs6/ Since the release of ...

  9. SQL Server 2008 安装教程

    http://www.downcc.com/tech/4135.html 序列号:Developer: PTTFM-X467G-P7RH2-3Q6CG-4DMYB

  10. ios开发经常使用RGB色值

    iOS中RGB经常使用的色值,同一时候可将对颜色的设置定义成宏,方便开发应用,如: // RGB颜色转换(16进制->10进制) #define UIColorFromRGB(rgbValue) ...