题目

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
/ \
2 3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

题解

分析这道题,由根节点往叶节点方向走,就是从高位往地位加和的方向。也就是说,当遍历的节点往叶节点方向走一层的时候,该节点的值应为父节点的值*10+当前节点的值。

由此可以写出代码:

 1     int sumhelper(TreeNode root, int levelBase) {
 2         if(root == null)
 3             return 0;
 4             
 5         if(root.left == null && root.right == null) {
 6             return levelBase + root.val; 
 7         }
 8         
 9         int nextLevelBase = (levelBase + root.val)*10 ;
         int leftSubTreeSum = sumhelper(root.left, nextLevelBase);
         int rightSubTreeSum = sumhelper(root.right, nextLevelBase);
     
         return leftSubTreeSum + rightSubTreeSum;
     }
     
     public int sumNumbers(TreeNode root) {
         return sumhelper(root,0);
     }

Sum Root to Leaf Numbers leetcode java的更多相关文章

  1. Sum Root to Leaf Numbers——LeetCode

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  2. Sum Root to Leaf Numbers [LeetCode]

    Problem description: http://oj.leetcode.com/problems/sum-root-to-leaf-numbers/ Basic idea: To store ...

  3. LeetCode: Sum Root to Leaf Numbers 解题报告

    Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...

  4. Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...

  5. 【LeetCode】129. Sum Root to Leaf Numbers 解题报告(Python)

    [LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/pr ...

  6. 【LeetCode】129. Sum Root to Leaf Numbers (2 solutions)

    Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...

  7. LeetCode解题报告—— Sum Root to Leaf Numbers & Surrounded Regions & Single Number II

    1. Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf p ...

  8. 23. Sum Root to Leaf Numbers

    Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...

  9. Java for LeetCode 129 Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

随机推荐

  1. HTTP协议-MIME类型

    每一个 URL 都代表着一个资源对象,而当我们请求一个网页的时候,看似只请求了一个 URI(统一资源标识符),实际上这个网页可能包含多个 URI,例如图片资源的 URI 和视频资源的 URI 等.此时 ...

  2. java 使用grpc步骤

    1.配置grpc maven依赖 <dependency> <groupId>io.grpc</groupId> <artifactId>grpc-ne ...

  3. 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 865  Solved: 414 Description 一个长 ...

  4. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  5. BZOJ3956: Count

    Description   Input   Output   Sample Input 3 2 0 2 1 2 1 1 1 3 Sample Output 0 3 HINT M,N<=3*10^ ...

  6. 移动前端开发和 Web 前端开发的区别是什么

    可以分成两部分理解1.服务器端开发,也叫后台开发,这是唯一的,对应不同的平台,他负责数据的分发与存储,和一些逻辑的处理.逻辑处理的多少由业务的复杂程度决定.服务端相对独立,与平台没啥关系. 2..1中 ...

  7. Dell PowerEdge R710服务器内存条插法/Dell 11G/12G系列服务器内存条插法(转)

    说明:以我的经验,其实插3/6/9这个顺序去一定没有错. DELL PowerEdge R710服务器支持 DDR3的 DIMM (RDIMM) 或 ECC非缓冲的 DIMM(UDIMM).单列和双列 ...

  8. 打印 Go 结构体(struct)信息:fmt.Printf("%+v", user)

    package main import "fmt" // 用户 type User struct { Id int Name string Age int } func main( ...

  9. [SQL ERROR 800]Corresponding types must be compatible in CASE expression.

    SQL应用报错800.Corresponding types must be compatible in CASE expression. 错误描述: 11:00:51  [SELECT - 0 ro ...

  10. 华为正在力挺的NB-IoT是什么鬼! - 全文

    NB-IoT,Niubility Internet of Thing,即牛掰的物联网技术. 关于物联网,小编想从2款很有趣的应用说起. 这不是在播限制级.这是Nake Labs推出的3D健身镜,这款智 ...