SSE(和方差、误差平方和):The sum of squares due to error
MSE(均方差、方差):Mean squared error
RMSE(均方根、标准差):Root mean squared error
R-square(确定系数):Coefficient of determination
Adjusted R-square:Degree-of-freedom adjusted coefficient of determination

下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!

一、SSE(和方差)

该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下

SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样

二、MSE(均方差)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下

三、RMSE(均方根)
该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下

在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!

四、R-square(确定系数)
在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的
(1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下

(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下

细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定义为SSR和SST的比值,故

其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定系数”的正常取值范围为[0 1],越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好

SSE,MSE,RMSE,R-square指标讲解的更多相关文章

  1. SSE,MSE,RMSE,R-square 指标讲解

    SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...

  2. Data Mining: SSE,MSE,RMSE,R-square指标讲解

    转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due ...

  3. 衡量线性回归法的指标MSE, RMSE,MAE和R Square

    衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...

  4. 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square

    衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...

  5. 线性回归中常见的一些统计学术语(RSE RSS TSS ESS MSE RMSE R2 Pearson's r)

    TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) ---  由误差导致的真实值和估计值 ...

  6. MSE,RMSE

    MSE: Mean Squared Error 均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度. RMSE  ...

  7. 回归评价指标MSE、RMSE、MAE、R-Squared

    分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE.R-Squared. MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的 ...

  8. 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)

    原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...

  9. SSE技术详解:一种全新的HTML5服务器推送事件技术

    前言 一般来说,Web端即时通讯技术因受限于浏览器的设计限制,一直以来实现起来并不容易,主流的Web端即时通讯方案大致有4种:传统Ajax短轮询.Comet技术.WebSocket技术.SSE(Ser ...

随机推荐

  1. hdu 5826 physics 物理题

    physics 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5826 Description There are n balls on a smoo ...

  2. 使用 IntraWeb (17) - 基本控件之 TIWRadioButton、TIWRadioGroup、TIWCheckBox

    TIWRadioButton //单选 TIWRadioGroup //单选组 TIWCheckBox //复选 TIWRadioButton 所在单元及继承链: IWCompRadioButton. ...

  3. 39、ABTestingGateway

    2015 年度新增开源软件排名 TOP 100 - 开源中国社区   http://www.oschina.net/news/69808/2015-annual-ranking-top-100-new ...

  4. 在.net core 2.0中生成exe文件

    .net core 2.0程序默认生成的是一个dll,需要通过dotnet命令来执行他. dotnet ConsoleApp1.dll 这种方式有点类似于java程序.本身这种方式没有什么问题,但在调 ...

  5. bitnami redmine配置全过程

    常见问题: 我在自己的机器上面配置完毕以后,移植到另外一台机器上面,登陆页面总是在检查network,并且最后网络加载失败,不论我是用桥接还是NAT方式连接.登陆系统以后,我尝试连接网络失败,尝试执行 ...

  6. oracle 两个逗号分割的字符串 如何判断是否其中有相同值

    比如字段A: 'ab,cd,ef,gh'字段B: 'aa,bb,cc,dd' 没有相同值 字段A: 'ab,cd,ef,gh'字段B: 'aa,bb,cd,dd' 有相同值cd 1.CREATE OR ...

  7. vs断点未能绑定

    原文链接:http://blog.csdn.net/pc0de/article/details/41790063 突然发现所有的c++项目在调试的时候加断点都会报错:”不能设置下面的断点.....断点 ...

  8. 在ASP.NET MVC控制器中获取链接中的路由数据

    在ASP.NET MVC中,在链接中附加路由数据有2种方式.一种是把路由数据放在匿名对象中传递: <a href="@Url.Action("GetRouteData&quo ...

  9. 使用 MVVMLight 绑定数据(转)

    MVVMLight绑定数据示例 好了,我们在新建了两个项目,分别是“MVVMLight的主程序” 与  “Model层”,运行的效果及解决方案结构如下: 其实很简单,就是绑定了一个数据源而已,编写的代 ...

  10. ​0​天​掌​握​i​O​S​开​发​之​D​a​y​2​ ​-​ ​内​存​管​理 (给学生讲解的课件,总结的不错)

    from:   10​天​掌​握​i​O​S​开​发​之​D​a​y​2​ ​-​ ​内​存​管​理