题目

显然一个熟练的选手应该能一眼看出我们需要维护点对的答案

显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了

那现在的问题就是怎么维护了

考虑一个非常\(sb\)的问题,我们只想知道一个点对\((x,y)\)从开始到某个时间\(t\)有多少个时间是联通的

如果\(i\)时刻\((x,y)\)突然联通了,那么我们就把答案加上\(t-i+1\),如果\(i\)时刻\((x,y)\)突然断开了,我们就把答案减去\(t-i+1\),正确性显然

于是我们只需要分别维护那些常数和加上了多少个当前时间就可以回答任意时刻的询问了

所以问题变成了矩阵加单点查,显然可以差分之后变成一个三维偏序问题,可以直接大力\(cdq\),当然也可以直接上树套树

代码

#include <bits/stdc++.h>
#define L first
#define R second
#define re register
#define LL long long
#define lb(x) ((x) & (-x))
#define mp std::make_pair
#define set_it std::set<pii>::iterator
inline int read() {
char c = getchar();
int x = 0;
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - 48, c = getchar();
return x;
}
typedef std::pair<int, int> pii;
const int maxn = 3e5 + 5;
const int M = maxn * 200;
std::set<pii> s;
int n, m, B, cnt;
char S[maxn], op[12];
int rt[maxn << 2];
LL g[M], A;
int h[M], l[M], r[M];
int ins(int now, int x, int y, int pos, int v, int w) {
if (!now)
now = ++cnt;
if (x == y) {
g[now] += v, h[now] += w;
return now;
}
int mid = x + y >> 1;
if (pos <= mid)
l[now] = ins(l[now], x, mid, pos, v, w);
else
r[now] = ins(r[now], mid + 1, y, pos, v, w);
g[now] = g[l[now]] + g[r[now]];
h[now] = h[l[now]] + h[r[now]];
return now;
}
void find(int now, int x, int y, int pos) {
if (!now)
return;
if (x == y) {
A += g[now];
B += h[now];
return;
}
int mid = x + y >> 1;
if (pos <= mid)
find(l[now], x, mid, pos);
else
find(r[now], mid + 1, y, pos), A += g[l[now]], B += h[l[now]];
}
void change(int x, int y, int a, int b) {
if (y > n)
return;
for (re int i = x; i <= n; i += lb(i)) rt[i] = ins(rt[i], 1, n, y, a, b);
}
void query(int x, int y) {
for (re int i = x; i; i -= lb(i)) find(rt[i], 1, n, y);
}
inline pii ask(int pos) {
s.insert(mp(pos, n + 1));
set_it it = s.find(mp(pos, n + 1));
--it;
s.erase(mp(pos, n + 1));
return *it;
}
inline void add(int x, int y, int lx, int ry, int t, int v) {
change(x, lx, v * (1 - t), v);
change(x, ry + 1, v * (t - 1), -1 * v);
change(y + 1, lx, v * (t - 1), -1 * v);
change(y + 1, ry + 1, v * (1 - t), v);
}
inline void getAns(int t) {
int x = read(), y = read();
if (x > y)
std::swap(x, y);
A = 0, B = 0;
query(x, y);
printf("%d\n", A + B * t);
}
int main() {
n = read() + 1, m = read();
scanf("%s", S + 1);
for (re int i = 1; i < n; i++) S[i] -= '0';
int t = 1;
for (re int i = 1; i <= n; i++)
if (!S[i])
s.insert(mp(t, i)), t = i + 1;
for (set_it it = s.begin(); it != s.end(); ++it) add((*it).L, (*it).R, (*it).L, (*it).R, 0, 1);
for (re int i = 1; i <= m; i++) {
scanf("%s", op);
if (op[0] == 'q')
getAns(i - 1);
if (op[0] == 't') {
int x = read();
pii ll = ask(x), rr = ask(x + 1);
if (!S[x]) {
add(ll.L, ll.R, rr.L, rr.R, i, 1);
s.erase(ll), s.erase(rr);
s.insert(mp(ll.L, rr.R));
} else {
add(ll.L, x, x + 1, rr.R, i, -1);
s.erase(ll);
s.insert(mp(ll.L, x));
s.insert(mp(x + 1, rr.R));
}
S[x] ^= 1;
}
}
return 0;
}

「APIO 2019」路灯的更多相关文章

  1. #3146. 「APIO 2019」路灯

    #3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...

  2. #3145. 「APIO 2019」桥梁

    #3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...

  3. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  4. 「APIO 2019」桥梁

    题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...

  5. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  6. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  7. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  8. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  9. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

随机推荐

  1. python编写微信公众号首图思路详解

    前言 之前一直在美图秀秀调整自己的微信公众号首图,效果也不尽如人意,老是调来调去,最后发出来的图片被裁剪了一大部分,丢失部分关键信息,十分恼火,于是想着用python写一个程序,把微信公众号首图的模式 ...

  2. Mac 精品软件

    Snagit:Mac 平台下最优秀的屏幕截图软件,可以录制屏幕视频.截图以及对截图进行加工. Flux 4:强大易用的网页设计工具,不需要学习编程即可在一天内建成一个专业的网站 Jump Deskto ...

  3. fedora23上安装和运行MySQL server (MySQL 已经被MariaDB取代)

    [root@localhost kemin]# dnf install mysql-server Fedora 23 - x86_64 - Updates                        ...

  4. 报错:[Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the paren

    今天在做Vue的时候,子组件关闭的时候,报如下错误 报错:vue.esm.js?65d7:610 [Vue warn]: Avoid mutating a prop directly since th ...

  5. csv转字典

    with open('filename','r') as csv_f: reader = csv.reader(csv_f) fieldnames = next(reader) csv_reader ...

  6. 第六天 函数与lambda表达式、函数应用与工具

    一.函数 1.匹配 位置匹配 def func(a,b,c): print(a,b,c) func(c=1,a=2,b=3) 2 3 1 def func(a, b=2, c=3): print(a, ...

  7. 312. 戳气球【困难】【区间DP】

    题目链接 有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中. 现在要求你戳破所有的气球.每当你戳破一个气球 i 时,你可以获得 nums[left] * ...

  8. android:两个应用之间怎样传值之activity

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zjh171/article/details/37738579 两个应用之间怎样传值.事实上这个标题太 ...

  9. 找到你的位置(JS在页面中的位置)最常用的方式是在页面中head部分放置<script>元素,浏览器解析head部分就会执行这个代码,然后才解析页面的其余部分

    找到你的位置(JS在页面中的位置) 我们可以将JavaScript代码放在html文件中任何位置,但是我们一般放在网页的head或者body部分. 放在<head>部分 最常用的方式是在页 ...

  10. 单独编译和使用webrtc音频降噪模块(附完整源码+测试音频文件)

    单独编译和使用webrtc音频增益模块(附完整源码+测试音频文件) 单独编译和使用webrtc音频回声消除模块(附完整源码+测试音频文件) webrtc的音频处理模块分为降噪ns,回音消除aec,回声 ...