http://acm.hdu.edu.cn/showproblem.php?pid=1394

题意:

给定一个数组a,一开始数组里面的元素都是0,现在有三个操作:

操作1:给第k个数字加上d.

操作2:查询区间[l,r]的和.

操作3:改变区间[l,r]的每个数为最接近的斐波那契数列.其中斐波那契数列的f0=1,f1=1.

题解:

这题是单点更新+区间求和+区间更新,我们知道区间求和为了节省一点时间用的是懒惰标记来给每个被更改过的区间打上标记,而当我们需要计算这个区间的时候才将标记下推,使得值更新.

所以对于操作1的话,当我们更新单点的值得时候,由于当前区间在之前可能经历过区间的更改,所以我们需要维护两个数组来.第一个数组sum1用来维护所需要的输出的和,第二个数组sum2用来维护的是经过操作3之后的当前区间的和.

所以对于操作1的时候,需要判断一下该点有没有懒惰标记,如果有的话,该点的值用的就是经过操作3的sum2的值来更改,否则直接更改sum1的值.

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int dir[][]={{,},{,},{,},{,-},{-,},{-,-},{,-},{-,}};
#define pi acos(-1)
#define ls rt<<1
#define rs rt<<1|1
#define me0(s) memset(s,0,sizeof(s))
#define me1(s) memset(s,1,sizeof(s))
#define mef(s) memset(s,-1,sizeof(s))
#define meinf(s) memset(s,inf,sizeof(s))
#define llinf 1e18
#define inf 1e9
const int N=1e5+;
ll fab[N];
int n,m;
ll lazy[N*]; //lazy表示该区间的数要更改为斐波那契
ll a[N],sum1[N*],sum2[N*];//sum1表示原来的和,sum2表示更改后的值
void init(){
fab[]=fab[]=;
for(int i=;i<=;i++){
fab[i]=fab[i-]+fab[i-];
}
}
ll find_fab(ll x){
ll ans=fab[];
ll c=abs(fab[]-x);
for(int i=;i<=;i++){
if(abs(x-fab[i])<c){
c=abs(x-fab[i]);
ans=fab[i];
}
}
return ans;
}
void pushup(int rt){
sum1[rt]=sum1[ls]+sum1[rs];
sum2[rt]=sum2[ls]+sum2[rs];
}
void pushdown(int rt){
if(lazy[rt]){
lazy[ls]=lazy[rs]=lazy[rt];
lazy[rt]=;
sum1[ls]=sum2[ls];
sum1[rs]=sum2[rs];
}
}
void build(int l,int r,int rt){
if(l==r){
sum2[rt]=;//初始状态所有数据为0,距离0最近的菲波那切数是1
return ;
}
int m=(l+r)/;
build(l,m,ls);
build(m+,r,rs);
pushup(rt);
}
void update1(int l,int r,int p,int c,int rt){
if(l==r){
if(lazy[rt]) sum1[rt]=sum2[rt]+c;
else sum1[rt]+=c;
sum2[rt]=find_fab(sum1[rt]);//更新sum1,sum2也要改变
lazy[rt]=;
return ;
}
pushdown(rt);
int m=(l+r)/;
if(p<=m) update1(l,m,p,c,ls);
if(p>m) update1(m+,r,p,c,rs);
pushup(rt);
}
void update2(int L,int R,int l,int r,int rt){
if(L<=l&&R>=r){
sum1[rt]=sum2[rt];
lazy[rt]=;
return ;
}
pushdown(rt);
int m=(l+r)/;
if(L<=m) update2(L,R,l,m,ls);
if(R>m) update2(L,R,m+,r,rs);
pushup(rt);
}
ll query(int L,int R,int l,int r,int rt){
if(L<=l&&R>=r){
return sum1[rt];
}
pushdown(rt);
int m=(l+r)/;
ll ans=;
if(L<=m) ans+=query(L,R,l,m,ls);
if(R>m) ans+=query(L,R,m+,r,rs);
return ans;
}
int main(int argc, char * argv[]){
init();
while(scanf("%d%d",&n,&m)!=EOF){
me0(sum1);
me0(lazy);
build(,n,);
while(m--){
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
if(op==){
update1(,n,l,r,);
}
else if(op==){
printf("%lld\n",query(l,r,,n,));
}
else{
update2(l,r,,n,);
}
}
}
return ;
}

hdu-4893的更多相关文章

  1. 2014联合三所学校 (HDU 4888 HDU 4891 HDU 4893)

    HDU 4891 The Great Pan 注册标题  他怎么说,你怎么样  需要注意的是乘法时,它会爆炸int 代码: #include<iostream> #include<c ...

  2. HDU 4893 Wow! Such Sequence! (线段树)

    Wow! Such Sequence! 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4893 Description Recently, Doge ...

  3. hdu 4893 Wow! Such Sequence!

    http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d - "add" 2 l r - "query sum ...

  4. HDU 4893 线段树的 点更新 区间求和

    Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  5. hdu 4893 Wow! Such Sequence!(线段树)

    题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...

  6. HDU 4893 Wow! Such Sequence!(2014 Multi-University Training Contest 3)

    题意: 有三种操作: 1 x y: 表示给x位置加上y 2 x y:查询[x,y]的区间和 3 x y:将 [x,y] 区间上的数变为最接近的 Fibonacci. 思路: 1 操作按正常单调更新,区 ...

  7. HDU 4893 线段树

    比赛时太大意,斐波拉契数列开小了. 题目大意:1个序列,3种操作,改变序列某个数大小,将序列中连续的一段每个数都变成其最近的斐波拉契数,以及查询序列中某一段的数之和. 解题思路:维护add[]数组表示 ...

  8. HDU 4893 Wow! Such Sequence!(2014年多校联合 第三场 G)(线段树)

    磨了一天的线段树,不能说完全搞清楚,只能说有一个大概的了解,靠着模板才把这道题A了,只能说太弱~~! 题意: 初始时有一字符串,全为0. 三种操作: 1 k d - add  把d加到第k个数上去2 ...

  9. 线段树 + 区间更新: HDU 4893 Wow! Such Sequence!

    Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  10. HDU 4893 Wow! Such Sequence! (树状数组)

    题意:给有三种操作,一种是 1 k d,把第 k 个数加d,第二种是2 l r,查询区间 l, r的和,第三种是 3 l r,把区间 l,r 的所有数都变成离它最近的Fib数, 并且是最小的那个. 析 ...

随机推荐

  1. 2 java程序入门

    1. 第一个java  class  { public static void main(String[] args) { System.out.println("Hello World!& ...

  2. python基础教程2第20章 项目1:即时标记

    simple_markup.py import sys, re from util import * print('<html><head><title>...&l ...

  3. CDH 下线节点

    rm -rf /var/web/com/public  杜绝这种删除方式 停止集群下线的节点 步骤: 1 停止主机上的角色 2 解除授权 3 从集群中删除 4 为了避免数据丢失,必须一台一台的进行,如 ...

  4. 区别 |mysql |Timestamp、time、datetime

    Timestamp 时间格式为 类似 2012-11-11 12:23:00 ,默认值为当前时间 time 时间格式类似12:23:00 默认值为null datetime 时间格式类似2012-11 ...

  5. 【原理】LVM(Logical Volume Manager)动态卷管理

    一张图让你学会LVM   导读 随着科技的进步,人们不知不觉的就进入了大数据的时代,数据的不断增加我们发现我们的磁盘越来越不够用了,接下来就是令人头疼的事情--加硬盘,数据的备份与还原.LVM就是Li ...

  6. DataWorks2.0的“业务流程”与1.0的“工作流”的对比

    DatwWorks终于升级2.0了,心情万分激动之余,又有一丝担忧.因为,没法再创建新的旧版工作流了...新版抛弃了“工作流”这个概念,引入了“业务流程”和“解决方案”两个新的概念.于是,作为团队Le ...

  7. bzoj1096题解

    [解题思路] 预处理spi=∑pj(j∈[1,i]),si=si-1+(xi-xi-1)*spi-1表示把工厂1~i-1的产品都运到工厂i的花费.于是把工厂j+1~i的产品都运到工厂i的花费为si-s ...

  8. (转)linux下装tomcat

    转载于:http://www.linuxidc.com/Linux/2016-11/136959.htm (linux社区) 1 tomcat介绍 Tomcat 是由 Apache Foundatio ...

  9. day28-描述符应用与类的装饰器

    #!/usr/bin/env python# -*- coding:utf-8 -*-# ------------------------------------------------------- ...

  10. AtCoder ABC 131E Friendships

    题目链接:https://atcoder.jp/contests/abc131/tasks/abc131_e 题目大意 给定 N 和 K,要求构造有 N 个点,恰有 K 对点,它们的最短距离为 2 的 ...