基于python的感知机
一、
1、感知机可以描述为一个线性方程,用python的伪代码可表示为:
sum(weight_i * x_i) + bias -> activation #activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入
2、定义激活函数f:
def func_activator(input_value):
return 1.0 if input_value >= 0.0 else 0.0
二、感知机的构建
class Perceptron(object):
def __init__(self, input_para_num, acti_func):
self.activator = acti_func
self.weights = [0.0 for _ in range(input_para_num)]
def __str__(self):
return 'final weights\n\tw0 = {:.2f}\n\tw1 = {:.2f}\n\tw2 = {:.2f}' \
.format(self.weights[0],self.weights[1],self.weights[2])
def predict(self, row_vec):
act_values = 0.0
for i in range(len(self.weights)):
act_values += self.weights [ i ] * row_vec [ i ]
return self.activator(act_values)
def train(self, dataset, iteration, rate):
for i in range(iteration):
for input_vec_label in dataset:
prediction = self.predict(input_vec_label)
self._update_weights(input_vec_label,prediction, rate)
def _update_weights(self, input_vec_label, prediction, rate):
delta = input_vec_label[-1] - prediction
for i in range(len(self.weights):
self.weights[ i ] += rate * delta * input_vec_label[ i ]
def func_activator(input_value):
return 1.0 if input_value >= 0.0 else 0.0
def get_training_dataset():
dataset = [[-1, 1, 1, 1], [-1, 0, 0, 0], [-1, 1, 0, 0], [-1, 0, 1, 0]]
return dataset
def train_and_perceptron():
p = Perceptron(3, func_activator)
dataset = get_training_dataset()
return p
if __name__ == '__main__':
and_prerception = train_and_perceptron
print(and_prerception)
print('1 and 1 = %d' % and_perception.predict([-1, 1, 1]))
print('0 and 0 = %d' % and_perception.predict([-1, 1, 1]))
print('1 and 0 = %d' % and_perception.predict([-1, 1, 1]))
print('0 and 1 = %d' % and_perception.predict([-1, 1, 1]))
基于python的感知机的更多相关文章
- 深度学习基础-基于Numpy的感知机Perception构建和训练
1. 感知机模型 感知机Perception是一个线性的分类器,其只适用于线性可分的数据. f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找 ...
- 【Machine Learning】决策树案例:基于python的商品购买能力预测系统
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...
- 基于Python+Django的Kubernetes集群管理平台
➠更多技术干货请戳:听云博客 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调 ...
- 关于《selenium2自动测试实战--基于Python语言》
关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至 ...
- psutil一个基于python的跨平台系统信息跟踪模块
受益于这个模块的帮助,在这里我推荐一手. https://pythonhosted.org/psutil/#processes psutil是一个基于python的跨平台系统信息监视模块.在pytho ...
- 一次完整的自动化登录测试-基于python+selenium进行cnblog的自动化登录测试
Web登录测试是很常见的测试!手动测试大家再熟悉不过了,那如何进行自动化登录测试呢!本文作者就用python+selenium结合unittest单元测试框架来进行一次简单但比较完整的cnblog自动 ...
- 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...
- 《Selenium2自动化测试实战--基于Python语言》 --即将面市
发展历程: <selenium_webdriver(python)第一版> 将本博客中的这个系列整理为pdf文档,免费. <selenium_webdriver(python)第 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
随机推荐
- <mvc:annotation-driven /><context:annotation-config/><context:component-scan/>
<context:annotation-config/> 隐式地向 Spring容器注册AutowiredAnnotationBeanPostProcessor. RequiredAnno ...
- Linux 内核驱动支持什么设备
struct usb_device_id 结构提供了这个驱动支持的一个不同类型 USB 设备的列表. 这个 列表被 USB 核心用来决定给设备哪个驱动, 并且通过热插拔脚本来决定哪个驱动自动加载, 当 ...
- DataBinding + Kotlin +Viewpager
1.创建viewmodel,其中BindAdapter的方法需要是静态方法,因此需要加@JvmStatic,"app:img"相当于一个自定义属性,后面xml中会用到,当app:i ...
- 【Jenkins】构建一个maven项目
一 .Ubuntu18.04安装Maven 官方安装文档:http://maven.apache.org/install.html ①去官网下载maven: ②解压到/opt/maven目录(我安装在 ...
- LeetCode111_求二叉树最小深度(二叉树问题)
题目: Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the s ...
- docker(整理中
docker镜像默认的下载地址就是docker的官网,而他们的官网在国内没有节点,时不时就被国家防火墙隔绝,会出现DNS解析不到,或者找不到镜像等狗血提示. 解决的方法有三个: 第一,就是不断尝试,因 ...
- .NETCore3.1中的Json互操作最全解读-收藏级
前言 本文比较长,我建议大家先点赞.收藏后慢慢阅读,点赞再看,形成习惯! 我很高兴,.NETCore终于来到了3.1LTS版本,并且将支持3年,我们也准备让部分业务迁移到3.1上面,不过很快我们就遇到 ...
- 程序员必须掌握的性能调优 X Y Z
热评博文:<如何设计出优美的Web API?>,现阅读量超 2500,小伙伴们不要错过哦! 2003 ~ 2008 年,这五年老兵哥我在通信行业做实习生和开发岗,主要用 C / C++ / ...
- leetcode.769旋转字符串
给定两个字符串, A 和 B. A 的旋转操作就是将 A 最左边的字符移动到最右边. 例如, 若 A = 'abcde',在移动一次之后结果就是'bcdea' .如果在若干次旋转操作之后,A 能变成B ...
- $POJ2411\ Mondriaan's\ Dream$ 状压+轮廓线$dp$
传送门 Sol 首先状压大概是很容易想到的 一般的做法大概就是枚举每种状态然后判断转移 但是这里其实可以轮廓线dp 也就是从上到下,从左到右地放方块 假设我们现在已经放到了$(i,j)$这个位置 那么 ...