超参数调整

详细可以参考官方文档

定义

在拟合模型之前需要定义好的参数

适用

  • Linear regression: Choosing parameters
  • Ridge/lasso regression: Choosing alpha
  • k-Nearest Neighbors: Choosing n_neighbors
  • Parameters like alpha and k: Hyperparameters
  • Hyperparameters cannot be learned by tting the model

GridsearchCV

sklearn.model_selection.GridSearchCV

  • 超参数自动搜索模块
  • 网格搜索+交叉验证
  • 指定的参数范围内,按步长依次调整参数,利用调整的参数训练学习器,从所有的参数中找到在验证集上精度最高的参数,这其实是一个训练和比较的过程
class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, n_jobs=None, iid='deprecated', refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False

参数

  • estimator:模型对象
  • param_grid:dict or list of dictionaries,字典类型的参数,定义一个字典然后都放进去
  • scoring:string, callable, list/tuple, dict or None, default: None,就是metrics,损失函数定义rmse,mse等
  • Number of jobs to run in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.控制cop,core并行运行数量

    -cv:int, cross-validation generator or an iterable, optional,k折交叉验证数,默认5折

    • Determines the cross-validation splitting strategy. Possible inputs for cv are:
    • None, to use the default 5-fold cross validation,integer, to specify the number of folds in a (Stratified)KFold,CV splitter,
    • An iterable yielding (train, test) splits as arrays of indices.
    • For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used.
  • verbose:控制输出信息的详细程度,愈高输出越多。

属性

常见:

  • cv_results_dict of numpy (masked) ndarrays输出交叉验证的每一个结果
  • best_estimator_:最好的估计器
  • best_params_:dict
    • 返回最优模型参数
    • Parameter setting that gave the best results on the hold out data.
    • For multi-metric evaluation, this is present only if refit is specified.
  • best_score_:float
    • 返回最优模型参数的得分
    • Mean cross-validated score of the best_estimator
    • For multi-metric evaluation, this is present only if refit is specified.
    • This attribute is not available if refit is a function.

复现

# Import necessary modules
from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression
# Setup the hyperparameter grid
# 创建一个参数集
c_space = np.logspace(-5, 8, 15)
# 这里是创建一个字典保存参数集
param_grid = {'C': c_space} # Instantiate a logistic regression classifier: logreg
# 针对回归模型进行的超参数调整
logreg = LogisticRegression() # Instantiate the GridSearchCV object: logreg_cv
logreg_cv = GridSearchCV(logreg, param_grid, cv=5) # Fit it to the data
logreg_cv.fit(X,y) # Print the tuned parameters and score
# 得到最好的模型
print("Tuned Logistic Regression Parameters: {}".format(logreg_cv.best_params_))
# 得到最好的模型的最好的结果
print("Best score is {}".format(logreg_cv.best_score_)) <script.py> output:
Tuned Logistic Regression Parameters: {'C': 3.727593720314938}
Best score is 0.7708333333333334

GridSearchCV can be computationally expensive, especially if you are searching over a large hyperparameter space and dealing with multiple hyperparameters. A solution to this is to use RandomizedSearchCV, in which not all hyperparameter values are tried out. Instead, a fixed number of hyperparameter settings is sampled from specified probability distributions.

grid相当于一个for循环,会遍历每一个参数,因此,当调参很多的时候,会导致计算量非常的大,因此,使用随机抽样的随机搜索会好一些

RandomizedSearchCV的使用方法其实是和GridSearchCV一致的,但它以随机在参数空间中采样的方式代替了GridSearchCV对于参数的网格搜索,在对于有连续变量的参数时,RandomizedSearchCV会将其当作一个分布进行采样这是网格搜索做不到的,它的搜索能力取决于设定的n_iter参数,同样的给出代码

csdn

RandomizedSearchCV

  • 随机搜索法
  • 不是每一个参数都被选取,而是从指定概率分布的参数中,抽取一定量的参数

    我还是没太能明白?

    可以比较一下时间

比较网格搜索而言,参数略有不同

算了,还是都列一下常见的吧,剩下的可以参照官方文档

比Grid 多了一个属性

  • .cv_results_,可以交叉验证的每一轮的结果

复现

# Import necessary modules
from scipy.stats import randint
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import RandomizedSearchCV # Setup the parameters and distributions to sample from: param_dist
# 以决策树为例,注意定一个字典的形式哦
param_dist = {"max_depth": [3, None],
"max_features": randint(1, 9),
"min_samples_leaf": randint(1, 9),
"criterion": ["gini", "entropy"]} # Instantiate a Decision Tree classifier: tree
tree = DecisionTreeClassifier() # Instantiate the RandomizedSearchCV object: tree_cv
tree_cv = RandomizedSearchCV(tree, param_dist, cv=5) # Fit it to the data
tree_cv.fit(X,y) # Print the tuned parameters and score
print("Tuned Decision Tree Parameters: {}".format(tree_cv.best_params_))
print("Best score is {}".format(tree_cv.best_score_)) <script.py> output:
Tuned Decision Tree Parameters: {'criterion': 'gini', 'max_depth': 3, 'max_features': 5, 'min_samples_leaf': 2}
Best score is 0.7395833333333334

Limits of grid search and random search

调参的限制点

  • grid:

    -random:

Hyperparameter tuning的更多相关文章

  1. 论文笔记系列-Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion

    论文: Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion 我们都知道实现AutoML的基本思路 ...

  2. How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning

    How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learn ...

  3. [C2W3] Improving Deep Neural Networks : Hyperparameter tuning, Batch Normalization and Programming Frameworks

    第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止, ...

  4. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  5. 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记

    Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week3, Hyperparameter tuning, Batch Normalization and Programming Frameworks

    Tuning process 下图中的需要tune的parameter的先后顺序, 红色>黄色>紫色,其他基本不会tune. 先讲到怎么选hyperparameter, 需要随机选取(sa ...

  7. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  8. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第二周(Optimization algorithms) —— 2.Programming assignments:Optimization

    Optimization Welcome to the optimization's programming assignment of the hyper-parameters tuning spe ...

  9. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

随机推荐

  1. Docker的基本使用与简介

    1 Docker简介 1.1 什么是虚拟化 在计算机中,虚拟化(英语:Virtualization)是一种资源管理技术,是将计算机的各种实体资源,如服务器.网络.内存及存储等,予以抽象.转换后呈现出来 ...

  2. LeetCode 126. Word Ladder II 单词接龙 II(C++/Java)

    题目: Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transfo ...

  3. 《Head first设计模式》之策略模式

    策略模式定义了算法族,分别封装起来,让它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户. 假设有一个模拟鸭子的游戏,游戏中会出现各种鸭子,一边游泳戏水,一边呱呱叫.这个游戏的内部设计了一个 ...

  4. aliyun---经过LB到后端k8s压测超时的问题

    环境:阿里云 压测主机:阿里云ECS(非LB后的主机) 压测目标:阿里云k8s自己的某个服务 k8s配置在kube-system 按照之前的ingress-nginx 配置了一个内网的ingress- ...

  5. pip 安装源-Python学习

    1.国内常用的安装源 -- 豆瓣:https://pypi.douban.com/simple -- 阿里:https://mirrors.aliyun.com/pypi/simple --中国科技大 ...

  6. Error serializing object:序列化对象时出错

    序列化对象时出错 :Error serializing object. Error serializing object. Cause: java.io.NotSerializableExceptio ...

  7. [WPF 自定义控件]创建包含CheckBox的ListBoxItem

    1. 前言 Xceed wpftoolkit提供了一个CheckListBox,效果如下: 不过它用起来不怎么样,与其这样还不如参考UWP的ListView实现,而且动画效果也很好看: 它的样式如下: ...

  8. Java基础之六、Java编程思想(8-10)

    八.多态 多态(也称作动态绑定.后期绑定或运行时绑定) 域(成员变量)是不具有多态性的,只有普通的方法调用是多态的,任何域访问操作都将由编译器解析,因此不是多态的 静态方法也是不具有多态性的 publ ...

  9. nginx配置访问https[自签版]

    通过openssl生成证书 (1)设置server.key,这里需要设置两遍密码: openssl genrsa -des3 -out server.key 1024 (2)参数设置,首先这里需要输入 ...

  10. PHP0026:PHP 博客项目开发3