pandas从0.15版开始提供分类数据类型,用于表示统计学里有限且唯一性数据集,例如描述个人信息的性别一般就男和女两个数据常用'm'和'f'来描述,有时也能对应编码映射为0和1。血型A、B、O和AB型等选择可以映射为0、1、2、3这四个数字分别代表各个血型。pandas里直接就有categorical类型,可以有效地对数据进行分组进行相应的汇总统计工作。

当DataFrame的某列(字段)上的数据值是都是某有限个数值的集合里的值的时候,例如:性别就男和女,有限且唯一。这列可以采用Categorical Data类型来存储、统计。

pandas的Categorical Data类型灵感来源于Data wareHorsing数据仓库里的维度表设计理念,即某列数据存储的不是数据本身,而是该数据对应的编码(有称为分类、字典编码) 这些编码比数据本身存储依赖的空间小,但能基于编码统计汇总的速度要比数据本身的存储、统计速度要快。

1 如何理解Categorical Data?

下面看一张某水果超市的供货商表(表1):

供货商 水果 价格
1 apple 5.20
2 pearl 3.50
3 orange 7.30
5 apple 5.00
6 orange 7.50
7 orange 7.30
9 apple 5.20
4 pearl 3.70
8 orange 7.30

第2列是各个水果供应商的能供应的水果类型,目前市场也就apple、pearl、orange三种水果可以买到,对于一个大超市而言可能这个表很长、有很多的水果供应商,假设有1亿条数据,那么数据存储所需空间主要浪费在水果名字上了,其他字段都是数值型的数据,而水果这一列是字符串型的,很占空间,如何能降低这张大表的存储空间浪费呢? 设计一个辅助的水果编码表(表2):

编码 水果
0 apple
1 pearl
2 orange

那么供应商的表就变为(表3):

供货商 水果 价格
1 0 5.20
2 1 3.50
3 2 7.30
5 0 5.00
6 2 7.50
7 2 7.30
9 0 5.20
4 1 3.70
8 2 7.30

变化后的表的数据存储所需的空间量就下来了。也就是说在供应商表里存储的不是水果名数据本身而是存储的水果对应的编码值(通常用整形数据)。可以查供应商表里水果的编码再查辅助的编码表找到水果名。这个水果的编码表在数据仓库里称为维度表(dimension tables)。 而pandas的categorical data的作用就是构建并依赖这个维度表,即例子里的水果编码表。pandas里维度表里记录着若干且唯一的几个分类,可以通过categorical数据的categories 属性获得而数据的所一一对应的编码可以通过codes获得。

编码 水果
0 apple
1 pearl
2 orange

当DataFrame里的某列数据采用categorical Data方式,那么这列数据的存储会大大降低。

import pandas as pd
import time

idx = [1,2,3,5,6,7,9,4,8]
name = ["apple","pearl","orange", "apple","orange","orange","apple","pearl","orange"]
price = [5.20,3.50,7.30,5.00,7.50,7.30,5.20,3.70,7.30]
df = pd.DataFrame({ "fruit": name , "price" : price}, index = idx)
print df,"\n"
print df.memory_usage(),"\n"
print df.dtypes
print "*" * 20
df['fruit'] = df['fruit'].astype('category')
print df
print df.memory_usage(),"\n"
print df.dtypes

程序的执行结果:

    fruit  price
1   apple    5.2
2   pearl    3.5
3  orange    7.3
5   apple    5.0
6  orange    7.5
7  orange    7.3
9   apple    5.2
4   pearl    3.7
8  orange    7.3 

fruit    72
price    72
dtype: int64 

fruit     object
price    float64
dtype: object
********************
    fruit  price
1   apple    5.2
2   pearl    3.5
3  orange    7.3
5   apple    5.0
6  orange    7.5
7  orange    7.3
9   apple    5.2
4   pearl    3.7
8  orange    7.3
fruit    33
price    72
dtype: int64 

fruit    category
price     float64
dtype: object

最初创建的DataFrame变量df的各个列的类型:

fruit     object
price    float64
dtype: object

经语句df['fruit'] = df['fruit'].astype('category')将fruit列由Series改为了category类型。

fruit    category
price     float64
dtype: object

请注意fruit列的类型的变化。正是因为fruit采用了category类型,其存储所需的空间由之前的

fruit    72
price    72
dtype: int64 

变为

fruit    33
price    72
dtype: int64 

即72变为33,变化了,尽管原始的DataFrame数据量不大,所以变化比率也不大。读者可以适当加大df的数据长度,可以看到很明显的存储容量的降低。

2 理解category

总结一下pandas的category数据,两次打印DataFrame数据df的结果都是一样的,但是第二次打印的df是其fruit列经语句df['fruit'] = df['fruit'].astype('category')改变了其数据类型已不是Series而是category类型,该列存储所需的内存使用容量大大降低。

import pandas as pd
import time

idx = [1,2,3,5,6,7,9,4,8]
name = ["apple","pearl","orange", "apple","orange","orange","apple","pearl","orange"]
price = [5.20,3.50,7.30,5.00,7.50,7.30,5.20,3.70,7.30]
#df = pd.DataFrame({ "fruit": name , "price" : price}, index = idx)
N = 1
df = pd.DataFrame({ "fruit": name * N, "price" : price * N}, index = idx * N)
df['fruit'] = df['fruit'].astype('category')
print df,"\n"
print "df.price.values\n", df.price.values,"\n"
print "df.fruit.values\n", df.fruit.values, "\n"
print "df.fruit.values.codes\n",df.fruit.values.codes, "\n"
print "df.fruit.values.categories\n",df.fruit.values.categories, "\n"

fruit列是category类型的,通过codes和categorie组合出fruit的values。

    fruit  price
1   apple    5.2
2   pearl    3.5
3  orange    7.3
5   apple    5.0
6  orange    7.5
7  orange    7.3
9   apple    5.2
4   pearl    3.7
8  orange    7.3 

df.price.values
[5.2 3.5 7.3 5.  7.5 7.3 5.2 3.7 7.3] 

df.fruit.values
[apple, pearl, orange, apple, orange, orange, apple, pearl, orange]
Categories (3, object): [apple, orange, pearl] 

df.fruit.values.codes
[0 2 1 0 1 1 0 2 1] 

df.fruit.values.categories
Index([u'apple', u'orange', u'pearl'], dtype='object') 

values对应于表1里的第2列即显示输出时“水果”,codes对应于表3的第2列即存储时“水果”列,categories对应于表2的“水果”列即有限唯一的一个集合。

3 总结

Categorical Data数据由codes和categories组成,categories是有限且唯一的分类集合,codes是原数据对应的分类的编码, Categorical Data不要求有限并唯一。

参考:

http://liao.cpython.org/pandas15/

Pandas的Categorical Data类型的更多相关文章

  1. Pandas的Categorical Data

    http://liao.cpython.org/pandas15/ Docs » Pandas的Categorical Data类型 15. Pandas的Categorical Data panda ...

  2. Categorical Data

    This is an introduction to pandas categorical data type, including a short comparison with R's facto ...

  3. 【转】浏览器中的data类型的Url格式,data:image/png,data:image/jpeg!

    所谓"data"类型的Url格式,是在RFC2397中 提出的,目的对于一些"小"的数据,可以在网页中直接嵌入,而不是从外部文件载入.例如对于img这个Tag, ...

  4. ssm整合快速入门程序(三)之Data类型转换器

    今天就写写springmvc配置Data类型转换器 首先在创建一个转换器的包cn.my.ssm.controller.converter,创建一个CustomDateConverter类实现Conve ...

  5. 第 7 章 Data 类型

    目录 第 7 章 Data 类型 一.创建方式 二.转时间戳 其他 第 7 章 Data 类型 @(es5) 参考了: 阮一峰javascript的标准.<javascript高级教程> ...

  6. 浏览器中的data类型的Url格式,data:image/png,data:image/jpeg!(源自:http://blog.csdn.net/roadmore/article/details/38498719)

    所谓"data"类型的Url格式,是在RFC2397中 提出的,目的对于一些“小”的数据,可以在网页中直接嵌入,而不是从外部文件载入.例如对于img这个Tag,哪怕这个图片非常非常 ...

  7. pandas的Categorical方法

    对于数据样本的标签,如果我们事先不知道这个样本有多少类别,那么可以对数据集的类别列进行统计,这时我们用pandas的Categorical方法就非常快的实现. 1.说明: 你的数据最好是一个serie ...

  8. 如何将查出的日期Data类型以Json格式输出到前端

    方法一 在返回的实体的属性中加上注解 // 创建时间    @DateTimeFormat(pattern = "yyyy-MM-dd HH:mm:ss")    private ...

  9. go学习笔记-Data类型(Arrays, Slices and Maps)

    Data类型(Arrays, Slices and Maps) array array就是数组,定义方式如下: var arr [n]type 在[n]type中,n表示数组的长度,type表示存储元 ...

随机推荐

  1. 华为:向充电宝说再见!有它,手机24h不断电

    编辑 | 于斌 出品 | 于见(mpyujian) 虽然,美国与中国的谈判还在协商中,不知道最后的消息是好是坏. 但最近华为公司的成绩,却值得让我们为其喝彩和感到骄傲. 据悉,30日,华为在上半年业绩 ...

  2. Mysql 慢查询之showprofile

    show profiles:返回服务器上最近执行的语句 资源的使用情况. 一.使用准备 Show profiles是5.0.37之后添加的,要想使用此功能,要确保版本在5.0.37之后. mysql& ...

  3. 劳动人民万岁(拒绝惰性)------- 浅谈迭代对象(Iterable) 迭代器(Iterator)

    一.前戏 问题:如果一次抓取所有城市天气 再显示,显示第一个城市气温时有很高的延时,并且很浪费储存空间 解决方案:以“用时访问”策略,并且能把说有城市气温封装到一个对象里,可用for一句进行迭代 二. ...

  4. MinGW编译dll并引用

    记得某位神仙曾经说过:一个项目不使用dll简直是一场灾难.(滑稽) 这篇文章以A+B/A-B为范例,来介绍如何在MinGW下编译dll并引用. 首先你要安装MinGW,并配置好环境变量(不配置环境变量 ...

  5. echarts相关问题记录

    1.图标距离容器边界 //echats options options : { //... grid : { top : 40, //距离容器上边界40像素 bottom: 30 //距离容器下边界3 ...

  6. 搭建 Kubernetes 高可用集群

    使用 3 台阿里云服务器(k8s-master0, k8s-master1, k8s-master2)作为 master 节点搭建高可用集群,负载均衡用的是阿里云 SLB ,需要注意的是由于阿里云负载 ...

  7. 忘记win8开机密码的清除方法

    1.进PE 2.打开计算机,进入 C:\Windows\System32 目录下 3.找到 magnify.exe 改名为 mangify1.exe .将 cmd.exe 改名为 magnify.ex ...

  8. Linux - XShell - alt 快捷键的设置

    1. 概述 命令行的 alt 快捷键可能会冲突 2. 环境 os win10 centos7 xshell xhell6 3. 场景 开启 centos7 虚拟机 在 win10 打开 xshell6 ...

  9. 面向对象--OO--object-oriented

    如何把大象装冰箱? 面向过程:打开冰箱门---把大象装进去---关上冰箱门 面向对象: 1.大象:进入冰箱.离开冰箱 2.冰箱:开门.关门 3.人:检测1.检测2 面向对象三大特性:封装.继承.多态 ...

  10. Linux Ubuntu运行线程程序出现undefined reference to ‘pthread_create’和undefined reference to ‘pthread_join’错误。

    Linux Ubuntu运行线程程序出现undefined reference to ‘pthread_create’和undefined reference to ‘pthread_join’错误. ...