\[\Large\displaystyle \int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
Tools Needed
\[\frac{1}{k\left ( j- k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k- j \right )}+\frac{1}{j\left ( k- j \right )^{2}}\]
\[\frac{1}{k\left ( j+ k \right )^{2}}=\frac{1}{j^{2}k}-\frac{1}{j^{2}\left ( k+ j \right )}-\frac{1}{j\left ( k+j \right )^{2}}\]
\[\ln\left ( \sin x \right )=-\ln 2-\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k}\]
\[\ln\left ( \cos x \right )=-\ln 2-\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k}\]
\[\cos\left ( 2jx \right )\cos\left ( 2kx \right )=\frac{1}{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\]
\[\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 2kx \right )\mathrm{d}x=\begin{cases}
\left ( -1 \right )^{k}\displaystyle \frac{\pi }{4k^{2}}& \text{ if } k\neq 0 \\
\displaystyle \frac{\pi ^{3}}{24}& \text{ if } k=0
\end{cases}\]
Tool Use
\[\begin{align*}
&\int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x \\
&=\int_{0}^{\frac{\pi }{2}}x^{2}\left ( \ln 2+\sum_{k=1}^{\infty }\frac{\cos\left ( 2kx \right )}{k} \right )\left ( \ln 2+\sum_{k=1}^{\infty }\left ( -1 \right )^{k}\frac{\cos\left ( 2kx \right )}{k} \right )\mathrm{d}x \\
&=\ln^{2}2 \int_{0}^{\frac{\pi }{2}}x^{2}\mathrm{d}x+\ln 2\sum_{k=1}^{\infty }\frac{1}{k}\int_{0}^{\frac{\pi }{2}}x^{2}\cos\left ( 4kx \right )\mathrm{d}x\\
&~~~+\sum_{j=1}^{\infty }\sum_{k=1}^{\infty }\frac{\left ( -1 \right )^{k}}{2jk}\int_{0}^{\frac{\pi }{2}}x^{2}\left [ \cos\left ( 2\left ( j-k \right )x \right )+\cos\left ( 2\left ( j+k \right )x \right ) \right ]\mathrm{d}x \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{j-1}\frac{1}{k\left ( j-k \right )^{2}}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j^{2}}\frac{\pi ^{2}}{6}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=j+1}^{\infty }\frac{1}{k\left ( j-k \right )^{2}} \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\sum_{k=1}^{\infty }\frac{1}{k\left ( j+k \right )^{2}} \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j-1}+\frac{1}{j}H_{j-1}^{\left ( 2 \right )} \right )-\frac{\pi ^{5}}{576}+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( -\frac{1}{j^{2}}H_{j}+\frac{1}{j}\frac{\pi ^{2}}{6} \right )\\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{1}{j^{2}}H_{j}-\frac{1}{j}\frac{\pi ^{2}}{6}+\frac{1}{j}H_{j}^{\left ( 2 \right )} \right ) \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right ) \\
&~~~+\frac{\pi }{8}\sum_{j=1}^{\infty }\frac{\left ( -1 \right )^{j}}{j}\left ( \frac{2}{j^{2}}H_{j}+\frac{2}{j}H_{j}^{\left ( 2 \right )}-\frac{3}{j^{3}} \right )-\frac{\pi ^{5}}{576} \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )+\frac{11\pi ^{5}}{5760}+\frac{\pi }{4}\sum \left ( -1 \right )^{j}\left ( \frac{1}{j^{3}}H_{j}+\frac{1}{j^{2}}H_{j}^{\left ( 2 \right )} \right ) \\
&=\frac{\pi ^{3}}{24}\ln^{2}2+\ln 2\frac{\pi }{16}\zeta \left ( 3 \right )-\frac{\pi ^{5}}{960}-\frac{\pi }{16}\sum_{j=1}^{\infty }\frac{H_{2j}}{j^{3}}
\end{align*}\]
Using the known result
\[\sum_{n=1}^{\infty }\frac{H_{2n}}{n^{3}}=-\frac{\pi ^{4}}{15}-\frac{1}{3}\pi ^{2}\ln^{2}2+\frac{\ln^{4}2}{3}+8\mathrm{Li}_{4}\left ( \frac{1}{2} \right )+7\ln 2\zeta \left ( 3 \right )\]
So here is the final result:
\[\Large\boxed{\displaystyle \begin{align*}
\int_{0}^{\frac{\pi }{2}}x^{2}\ln\left ( \sin x \right )\ln\left ( \cos x \right )\mathrm{d}x&=\color{blue}{\frac{\pi ^{3}}{16}\ln^{2}2+\frac{\pi ^{5}}{320}-\frac{3}{8}\ln 2\zeta \left ( 3 \right )}\\
&~~~\color{blue}{-\frac{\pi }{48}\ln^{4}2-\frac{1}{2}\mathrm{Li}_{4}\left ( \frac{1}{2} \right )}
\end{align*}}\]

Logarithmic-Trigonometric积分系列(一)的更多相关文章

  1. Logarithmic-Trigonometric积分系列(二)

    \[\Large\displaystyle \int_0^{\pi/2}\ln^2(\sin x)\ln(\cos x)\tan x \,{\rm d}x\] \(\Large\mathbf{Solu ...

  2. .Net中的AOP系列之构建一个汽车租赁应用

    返回<.Net中的AOP>系列学习总目录 本篇目录 开始一个新项目 没有AOP的生活 变更的代价 使用AOP重构 本系列的源码本人已托管于Coding上:点击查看. 本系列的实验环境:VS ...

  3. JavaScript学习笔记5 之 计时器 & scroll、offset、client系列属性 & 图片无缝滚动

    一.计时器 setInterval ( 函数/名称 , 毫秒数 )表示每经过一定的毫秒后,执行一次相应的函数(重复) setTimeout ( 函数/名称 , 毫秒数 ) 表示经过一定的毫秒后,只执行 ...

  4. 算法系列:FFT 001

    转载自http://blog.csdn.net/orbit/article/details/17210461 2012年9月的时候,一个南京的大学生从电视台播放的一段记者采访360总裁周鸿祎的视频中破 ...

  5. Aoite 系列(04) - 强劲的 CommandModel 开发模式(上篇)

    Aoite 是一个适于任何 .Net Framework 4.0+ 项目的快速开发整体解决方案.Aoite.CommandModel 是一种开发模式,我把它成为"命令模型",这是一 ...

  6. C#微信公众号开发系列教程五(接收事件推送与消息排重)

    微信公众号开发系列教程一(调试环境部署) 微信公众号开发系列教程一(调试环境部署续:vs远程调试) C#微信公众号开发系列教程二(新手接入指南) C#微信公众号开发系列教程三(消息体签名及加解密) C ...

  7. Oracle学习系列1-7

    Oracle学习系列1 两个服务必须启动: OracleOraDb10g*TNListener 和 OracleService*** 使用sqlplusw先进行环境的设置 set linesize 3 ...

  8. Oracle学习系列6

    Oracle学习系列6 ************************************************************************************ 删除约 ...

  9. 程序世界系列之-struts2安全漏洞引发的安全杂谈(上)

    目录: 1.讨论关于struts 安全问题. 2.黑客文化. 3.如何降低安全漏洞的出现. 4.忠告建议. 题记: 这篇文章本来很早应该和大家见面的,中间由于个人原因调整了系列文章发布时间,实属罪过. ...

随机推荐

  1. 阿里云Linux服务器安装Redis 完整步骤(包括处理远程连接问题)

    跟随本篇文章步骤,包你成功安装并连接使用. 1.获取redis资源 wget http://download.redis.io/releases/redis-4.0.8.tar.gz 2.解压 tar ...

  2. 《深入理解java虚拟机》读书笔记三——第四章

    第四章 虚拟机性能监控与故障处理工具 1.JDK命令行工具 jps命令: 作用:列出正在运行的虚拟机进程. 格式:jps [option] [hostid] 选项:-q 只输出LVMID(Local ...

  3. 微信小程序配置合法域名和业务域名

    在微信小程序的开发过程中,当需要请求第三方网站数据时,都是直接调用wx.request接口的: xxxx:function(){ wx.request({ url: 'xxxxxxxxxx', dat ...

  4. LED Keychain: Timeless Business Gift

    Every business owner understands the importance of reducing marketing budgets and investing in sales ...

  5. K3/Cloud 用插件打开一张已存在的单据

    BillShowParameter billpara = new BillShowParameter();billpara.FormId = "SAL_SaleOrder";//单 ...

  6. 题解 CF171A 【Mysterious numbers - 1】

    又是愚人节题目qwq-- 说一下题意吧: 把第1个数翻转后加第二个数 具体思路: 1.定义变量,进行输入 int a,b; cin>>a>>b; 2.定义一个变量c,作为存储第 ...

  7. 微信小程序中的左右联动

    微信小程序端的左右联动-滚动效果插件: 效果图如下:                                                                          ...

  8. AcWing 1017. 怪盗基德的滑翔翼

    #include<iostream> using namespace std ; ; int f[N],g[N]; int w[N]; int main() { int t; cin> ...

  9. 腾讯短链接url生成接口/腾讯短网址在线生成/新浪微博短链接生成器的分享

    在通常情况下,URL是由系统生成的,通常包括URI路径,多个查询参数,可以对参数进行加密和解密. 当人们要分享某个URL,比如短信,邮件,社交媒体,这就需要短URL.而短网址,顾名思义就是在长度上比较 ...

  10. 棋盘划分问题中4的k次方减一是三的倍数

    1.数学归纳法(万物皆可数学归纳) ①当n=1时:4-1=3(是三的倍数) ②假设n-1成立证明n成立:4n-1=4n-1*(4-1)+4n-1-1 =3*4n-1+(4n-1-1) 所以4n-1%3 ...