机器学习作业(一)线性回归——Python(numpy)实现
题目太长啦!文档下载【传送门】
第1题
简述:设计一个5*5的单位矩阵。
import numpy as np
A = np.eye(5)
print(A)
运行结果:

第2题
简述:实现单变量线性回归。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D #-----------------计算代价值函数-----------------------
def computeCost(X, y, theta):
m = np.size(X[:,0])
J = 1/(2*m)*np.sum((np.dot(X,theta)-y)**2)
return J #----------------根据人口预测利润----------------------
#读取数据集中数据,第一列是人口数据,第二列是利润数据
data = np.loadtxt('ex1data1.txt',delimiter=",",dtype="float")
m = np.size(data[:,0])
# print(data) #------------------绘制样本点--------------------------
X = data[:,0:1]
y = data[:,1:2]
plt.plot(X,y,"rx")
plt.xlabel('Population of City in 10,000s')
plt.ylabel('Profit in $10,000s')
# plt.show() #-----------------梯度下降计算局部最优解----------------
#添加第一列1
one = np.ones(m)
X = np.insert(X,0,values=one,axis=1)
# print(X) #设置α、迭代次数、θ
theta = np.zeros((2,1))
iterations = 1500
alpha = 0.01 #梯度下降,并显示线性回归
J_history = np.zeros((iterations,1))
for iter in range(0,iterations):
theta = theta - alpha/m*np.dot(X.T,(np.dot(X,theta)-y))
J_history[iter] = computeCost(X,y,theta)
plt.plot(data[:,0],np.dot(X,theta),'-')
plt.show()
# print(theta)
# print(J_history) #--------------------显示三维图------------------------
theta0 = np.linspace(-10,10,100)
theta1 = np.linspace(-1,4,100)
J_vals = np.zeros((np.size(theta0),np.size(theta1)))
for i in range(0,np.size(theta0)):
for j in range(0,np.size(theta1)):
t = np.asarray([theta0[i],theta1[j]]).reshape(2,1)
J_vals[i,j] = computeCost(X,y,t)
# print(J_vals)
J_vals = J_vals.T #需要转置一下,否则轴会反
fig1 = plt.figure()
ax = Axes3D(fig1)
ax.plot_surface(theta0,theta1,J_vals,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))
ax.set_xlabel('theta0')
ax.set_ylabel('theta1')
ax.set_zlabel('J')
plt.show() #--------------------显示轮廓图-----------------------
lines = np.logspace(-2,3,20)
plt.contour(theta0,theta1,J_vals,levels = lines)
plt.xlabel('theta0')
plt.ylabel('theta1')
plt.plot(theta[0],theta[1],'rx')
plt.show()
运行结果:



第3题
简述:实现多元线性回归。
import numpy as np
import matplotlib.pyplot as plt #-----------------计算代价值函数-----------------------
def computeCost(X, y, theta):
m = np.size(X[:,0])
J = 1/(2*m)*np.sum((np.dot(X,theta)-y)**2)
return J #-------------------根据面积和卧室数量预测房价----------
#读取数据集中数据,第一列是面积数据,第二列是卧室数量,第三列是房价
data = np.loadtxt('ex1data2.txt',delimiter=",",dtype="float")
m = np.size(data[:,0])
# print(data)
X = data[:,0:2]
y = data[:,2:3] #----------------------均值归一化---------------------
mu = np.mean(X,0)
sigma = np.std(X,0)
X_norm = np.divide(np.subtract(X,mu),sigma)
one = np.ones(m) #添加第一列1
X_norm = np.insert(X_norm,0,values=one,axis=1)
# print(mu)
# print(sigma)
# print(X_norm) #----------------------梯度下降-----------------------
alpha = 0.05
num_iters = 100
theta = np.zeros((3,1));
J_history = np.zeros((num_iters,1))
for iter in range(0,num_iters):
theta = theta - alpha/m*np.dot(X_norm.T,(np.dot(X_norm,theta)-y))
J_history[iter] = computeCost(X_norm,y,theta)
# print(theta)
x_col = np.arange(0,num_iters)
plt.plot(x_col,J_history,'-b')
plt.xlabel('Number of iterations')
plt.ylabel('Cost J')
plt.show() #----------使用上述结果对[1650,3]的数据进行预测--------
test1 = [1,1650,3]
test1[1:3] = np.divide(np.subtract(test1[1:3],mu),sigma)
price = np.dot(test1,theta)
print(price) #输出预测结果[292455.63375132] #-------------使用正规方程法求解----------------------
one = np.ones(m)
X = np.insert(X,0,values=one,axis=1)
theta = np.dot(np.dot(np.linalg.pinv(np.dot(X.T,X)),X.T),y)
# print(theta)
price = np.dot([1,1650,3],theta)
print(price) #输出预测结果[293081.46433497]
运行结果:【一个疑惑>>两种方法求解的估算价格很小,但θ相差较大?】

机器学习作业(一)线性回归——Python(numpy)实现的更多相关文章
- 机器学习:单元线性回归(python简单实现)
文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的 ...
- 【机器学习】线性回归python实现
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...
- 干货 | 请收下这份2018学习清单:150个最好的机器学习,NLP和Python教程
机器学习的发展可以追溯到1959年,有着丰富的历史.这个领域也正在以前所未有的速度进化.在之前的一篇文章中,我们讨论过为什么通用人工智能领域即将要爆发.有兴趣入坑ML的小伙伴不要拖延了,时不我待! 在 ...
- 机器学习1—简介及Python机器学习环境搭建
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算 ...
- Python numpy中矩阵的用法总结
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类 ...
- CS231中的python + numpy课程
本课程中所有作业将使用Python来完成.Python本身就是一种很棒的通用编程语言,现在在一些流行的库(numpy,scipy,matplotlib)的帮助下,它为科学计算提供强大的环境. 我们希望 ...
- Python NumPy学习总结
一.NumPy简介 其官网是:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Num ...
- 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)
编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...
- 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark
有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...
随机推荐
- 机器学习算法——kNN
顶级数据挖掘会议ICDM于2006年12月评选出了数据挖掘领域的十大经典算法,kNN便是其中一个. kNN算法的思想是:在训练集中选取与输入数据最近的k个邻居,统计k个邻居中出现次数最多的类别,以此作 ...
- MySQL分析工具explain介绍
EXPLAIN是MySQl必不可少的一个分析工具,主要用来测试sql语句的性能及对sql语句的优化,或者说模拟优化器执行SQL语句. 简单的说是execute plan, 获取MySQL数据库的执行计 ...
- SpringBoot缓存 --(二)Redis单机缓存
pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- linux系统下apache服务的启动、停止、重启命令
本文章简单的介绍了关于linux下在利用命令来操作apache的基本操作如启动.停止.重启等操作,对入门者不错的选择.本文假设你的apahce安装目录为 usr local apache2,这些方法适 ...
- 0x00 C语言-环境配置
这里介绍怎么将安装好的v2019配置成可以编写c/c++以及windows应用程序的编译器. vs2019下载地址(官网):https://visualstudio.microsoft.com/zh- ...
- Mysql-分库分区分表
大数据-分表分区分库问题集:1.分表时两张表的数据都一样么?如果一样,只是降低了表的访问量,但是如果数据多了还是没有提高查询的效率答:分表是对一张表中的数据按照某种规则进行拆分到三张表中,三张表的所有 ...
- Vue组件库读取自定义配置文件
有这样一个场景,在组件库中新增一个配置文件,后续只修改一下配置文件中的配置项就可以实现不同的需求,下面就让我们I一起来实现吧. (一)在在项目的根目录(package.json所在目录)中创建一个vu ...
- B - Draw!
You still have partial information about the score during the historic football match. You are given ...
- java文本文件加密
加密方法是通过输入流对源文件字符逐个读取,对其读取到字符的ascll值进行异或运算,并将其放入新文件中,解密时只要用相同的密钥进行ascll异或运算并向新文件输出即可,即对文件首次用该程序处理为加密, ...
- STM32学习笔记 —— 0.1 Keil5安装和DAP仿真下载器配置的相关问题与注意事项
Keil5安装的注意事项 安装细节在此不再做过多赘述,主要介绍一下注意事项: 安装路径中不能有中文. ARM的Keil的路径不能与51的Keil的有冲突,必须将目录分开. Keil5中不会自动添加芯片 ...