【bzoj1486】【[HNOI2009]梦幻布丁】启发式链表合并(详解)
(画师当然是武内崇啦)
Description
N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.
Input
第一行给出N,M表示布丁的个数和好友的操作次数. 第二行N个数A1,A2…An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y. 若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0
Output
针对第二类操作即询问,依次输出当前有多少段颜色.
Sample Input
4 3
1 2 2 1
2
1 2 1
2
Sample Output
3
1
最近在复习数据结构,本来打算找一道平衡树的题来做,在黄学长的博客里看到这道题。结果发现和平衡树其实没有关系。。。
看到这个题的第一想法是暴力:每次o(n)修改或查询
然而o(n^2)肯定会爆(虽然题目不给范围神坑)。我们希望能够通过某些手段来降log。首先是想到线段树,因为线段树可以解决区间内连续色段,但是我们发现这道题是针对整个序列而言,且修改无法用线段树优化。
那怎么办呢?我们发现这道题是将所有颜色为x的改为y,总共有效的修改数量是初始时的颜色种数(最多n)。其实这相当于将颜色x与颜色y合并,且之后不会再拆开。所以说这就是合并的问题啦~(废话了这么久。。)
但是该如何合并呢?我们将同一种颜色的布丁用链表连起来,合并的时候是o(1)的。但是对于合并时ans的更新是o(n)的(对于每一个都判断修改后是否与左右连接)。总的来说,就是每次合并时的复杂度“被修改的颜色的布丁个数”。
这个是可以优化的,就是用启发式合并(把小的往大的合并)。这样就是o(nlogn)的了。证明就搬一下黄学长的;
1:每次O(N)
2:每次合并后,队列长度一定大于等于原来短的长度的两倍。
这样相当于每次合并都会让短的长度扩大一倍以上,
最多扩大logN次,所以总复杂度O(NlogN),每次O(logN)。
但是由于为了启发式合并,我们改变了合并方向。需要用一个f[i]数组来存 调用i颜色时真正用到的颜色。
下面谈谈链表:
我以前一直都不清楚链表到底是个什么货。现在好像是明白了:
有两种链表:
1、对于每个点,有一个pre(前继)和nxt(后继)。这相当于双向链表
2、记录一个链表的开头head,对每个点记录一个nxt(下一个)。这相当于是单向链表
这道题需要访问链表的全部元素,所以用第二种链表。
(其实之前接触过这链表很多次,但一直不知道这就是链表)
放代码啦:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000000+5;
int n,m,c[N],siz[N],f[N],ans=0;
int head[N],nxt[N],st[N];
void solve(int a,int b){
for(int i=head[a];i;i=nxt[i]){
if(c[i+1]==b) ans--;
if(c[i-1]==b) ans--;
}
for(int i=head[a];i;i=nxt[i]) c[i]=b;
/*这是两种不同的合并方式*/
// nxt[st[a]]=head[b];head[b]=head[a];
nxt[st[b]]=head[a];
// head[a]=0,st[a]=0;
st[b]=st[a];
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&c[i]);
siz[c[i]]++,f[c[i]]=c[i];
if(c[i]!=c[i-1]) ans++;
if(!head[c[i]]) st[c[i]]=i;
nxt[i]=head[c[i]],head[c[i]]=i;
}
int opt,x,y;
while(m--){
scanf("%d",&opt);
if(opt==2) printf("%d\n",ans);
else{
scanf("%d%d",&x,&y);
if(x==y) continue;//
if(siz[f[x]]==0) continue;
if(siz[f[x]]>siz[f[y]]) swap(f[x],f[y]);
if(siz[f[x]]==0) continue;
siz[f[x]]+=siz[f[y]],siz[f[x]]=0;//+=
solve(f[x],f[y]);
}
}
return 0;
}
【bzoj1486】【[HNOI2009]梦幻布丁】启发式链表合并(详解)的更多相关文章
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)
1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1818 Solved: 761[Submit][Status ...
- BZOJ 1483:[HNOI2009]梦幻布丁(链表+启发式合并)
[HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一 ...
- bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector
1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...
- BZOJ1483 [HNOI2009]梦幻布丁 【链表 + 启发式合并】
题目 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入格式 第一行给出N,M表示 ...
- BZOJ 1483:[HNOI2009]梦幻布丁(链表启发式合并)
http://www.lydsy.com/JudgeOnline/problem.php?id=1483 题意:中文. 思路:对于每一种颜色,用一个链表串起来,一开始保存一个答案,后面颜色替换的时候再 ...
- [HNOI2009]梦幻布丁(链表+启发式合并)
洛谷传送门 开始一个O(n^2)思路,每次每句要改变颜色的点,改变完颜色后重新计算颜色的段数,显然拉闸. 然后呢..然后就不会了. 看了别人博客,才知道有个叫做启发式合并的东西,就是把小的合并到大的上 ...
- 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)
题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...
- BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )
把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...
- 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并
[BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...
随机推荐
- jsonArray与jsonObject
最近两个星期接触最多的就是json和map了. 之前用到的json,就是一个键对应一个值,超级简单的一对一关系.现在用到的json那可以层层嵌套啊,刚开始接触的时候,确实有种崩溃的赶脚,不想去理,取个 ...
- bzoj Gty的超级妹子树 块状树
Gty的超级妹子树 Time Limit: 7 Sec Memory Limit: 32 MBSubmit: 500 Solved: 122[Submit][Status][Discuss] De ...
- rman备份与异机恢复
一.rman备份脚本并为定时任务 #!/bin/bashsource ~/.bash_profileexport LANG=en_USBACKUP_DATE=`date +%d`#RMAN_LOG_F ...
- JavaScript中cookie使用
转自:http://www.cnblogs.com/yjzhu/archive/2012/11/26/2789032.html 一.什么是 cookie? cookie 就是页面用来保存信息,比如自动 ...
- supervisor提高nodejs调试效率
1.NodeJS环境安装 2.安装supervisor npm install supervisor -g (表示安装到全局路径下) 开发nodejs程序,调试的时候,无论你修改了代码的哪一部分,都 ...
- Dom4j解析语音数据XML文档(注意ArrayList多次添加对象,会导致覆盖之前的对象)
今天做的一个用dom4j解析声音文本的xml文档时,我用ArrayList来存储每一个Item的信息,要注意ArrayList多次添加对象,会导致覆盖之前的对象:解决方案是在最后将对象添加入Array ...
- [洛谷P3501] [POI2010]ANT-Antisymmetry
洛谷题目链接:[POI2010]ANT-Antisymmetry 题目描述 Byteasar studies certain strings of zeroes and ones. Let be su ...
- IntelliJ 创建main函数快捷
今天偶然发现了IntelliJ中 创建main函数的快捷键,依次还有for循环,System.out.println(); 在编写代码的时候直接输入psv就会看到一个psvm的提示,此时点击tab键一 ...
- C# ICSharpCode.SharpZipLib.Zip 的使用
public static class ZipFileHelper { #region 加压解压方法 /// <summary> /// 功能:压缩文件(暂时只压缩文件夹下一级目录中的文件 ...
- GCC编译安装
1. 安装静态库,如果没有安装静态库,后面编译不会通过: yum install glibc-static libstdc++-static -y 2. 下载GCCxxx.tat.gz: wget h ...