Rescue The Princess
Description
Several days ago, a beast caught a beautiful princess and the princess was put in prison. To rescue the princess, a prince who wanted to marry the princess set out immediately. Yet, the beast set a maze. Only if the prince find out the maze’s exit can he save the princess.
Input
The first line is an integer T(1 <= T <= 100) which is the number of test cases. T test cases follow. Each test case contains two coordinates A(x1,y1) and B(x2,y2), described by four floating-point numbers x1, y1, x2, y2 ( |x1|, |y1|, |x2|, |y2| <= 1000.0).
Output
For each test case, you should output the coordinate of C(x3,y3), the result should be rounded to 2 decimal places in a line.
Sample Input
4 -100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 100.00 100.00 1.00 0.00 1.866 0.50
Sample Output
(-50.00,86.60) (-86.60,50.00) (-36.60,136.60) (1.00,1.00)
给你等边三角形的两个点A和B,求第三个点C的坐标;
且ABC是逆时针的;
题解1:
因为要求ABC是逆时针的,所以可以直接用B绕A逆时针旋转60°;
这里有个通用的公式,证明稍微复杂,可以加到模板里以备不时之需:
点(x1,y1)绕点(x2,y2)逆时针旋转a角度后新的坐标(X,Y)为:
X=(x1-x2)*cos(a)-(y1-y2)*sin(a)+x2;
Y=(x1-x2)*sin(a)+(y1-y2)*cos(a)+y2;
如果直接按照题意的等边三角形的情况去画图推导也可以推导出来,不过这个公式比较普适。
#include <stdio.h> #include <iostream> #include <string> #include <math.h> #include <stdlib.h> #include <algorithm> using namespace std; int main() { int t; scanf("%d", &t); while(t--){ double x1,x2,x3,y1,y2,y3; scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); double dx=x2-x1,dy=y2-y1; x3=dx/-dy*sqrt(+x1; y3=dy/+dx*sqrt(+y1; printf("(%.2lf,%.2lf)\n",x3,y3); } ; }
题解2:
AB线段绕A点逆时针旋转60°后B点的位置
用到平面几何求解
x3=x1+L*cos(60°+angle);
y3=y1+L*sin(60°+angle);
angle=atan2(y2-y1,x2-x1);
#include <iostream> #include<cstdio> #include<cmath> using namespace std; const double PI=acos(-1.0); int main() { int t; cin>>t; double x1,y1,x2,y2,x3,y3,angle,l; while(t--) { scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2); angle=atan2(y2-y1,x2-x1); l=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); x3=x1+l*cos(angle+PI/3.0); y3=y1+l*sin(angle+PI/3.0); printf("(%.2lf,%.2lf)\n",x3,y3); } ; }
Rescue The Princess的更多相关文章
- sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)
Rescue The Princess Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Several days ago, a b ...
- 山东省第四届acm.Rescue The Princess(数学推导)
Rescue The Princess Time Limit: 1 Sec Memory Limit: 128 MB Submit: 412 Solved: 168 [Submit][Status ...
- 计算几何 2013年山东省赛 A Rescue The Princess
题目传送门 /* 已知一向量为(x , y) 则将它旋转θ后的坐标为(x*cosθ- y * sinθ , y*cosθ + x * sinθ) 应用到本题,x变为(xb - xa), y变为(yb ...
- sdutoj 2603 Rescue The Princess
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2603 Rescue The Princess ...
- SDUT 2603:Rescue The Princess
Rescue The Princess Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Several days ago, a b ...
- 2013山东省“浪潮杯”省赛 A.Rescue The Princess
A.Rescue The PrincessDescription Several days ago, a beast caught a beautiful princess and the princ ...
- 山东省赛A题:Rescue The Princess
http://acm.sdibt.edu.cn/JudgeOnline/problem.php?id=3230 Description Several days ago, a beast caught ...
- H - Rescue the Princess ZOJ - 4097 (tarjan缩点+倍增lca)
题目链接: H - Rescue the Princess ZOJ - 4097 学习链接: zoj4097 Rescue the Princess无向图缩点有重边+lca - lhc..._博客园 ...
- 山东省第四届ACM程序设计竞赛A题:Rescue The Princess
Description Several days ago, a beast caught a beautiful princess and the princess was put in prison ...
随机推荐
- 配合JAVA的AJAX使用
概要 Ajax是“Asynchronous JavaScript and XML”的简称,即异步的JavaScript和XML. readyState属性用来返回当前的请求状态,有五个可选值.分别是0 ...
- 使用Kibana
Kibana基本使用 https://www.elastic.co/guide/en/kibana/6.x/tutorial-load-dataset.html https://www.elastic ...
- appendTo()方法和append()方法
appendTo() 方法在被选元素的结尾(仍然在内部)插入指定内容.
- vector 基础2
size :返回有效元素个数 max_size :返回 vector 支持的最大元素个数 resize :改变有效元素的个数 capacity :返回当前可使用的最大元素内存块数(即存储容量) ...
- [SDOI2016] 排列计数 (组合数学)
[SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...
- CentOS 6.4安装配置ldap
CentOS 6.5安装配置ldap 时间:2015-07-14 00:54来源:blog.51cto.com 作者:"ly36843运维" 博客 举报 点击:274次 一.安装l ...
- 获取oracle当前系统设置了哪些事件
ALTER SESSION SET EVENTS '10046 trace name context forever,level 12' 会话已更改. DECLARE EVENT_LEVEL NUMB ...
- C# 序列化理解 1(转)
序列化又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.其目的是以某种存储形成使自定义对象持久化,或者将这种对象从一个地方传输到另一个地方. .NET框架提供了两种串行化的方式: ...
- Hibernate 懒加载 错误----no session
错误: unable to evaluate the expression Method threw 'org.hibernate.LazyInitializa org.hibernate.LazyI ...
- 如何根据pom.xml文件下载jar包
遇到过这种情况:从网上下载了一个项目, 使用的maven, 但是我想要新建一个项目, 但是不需要使用maven. 但是我怎么样才能将他那个项目的所有引用的jar包给下载下载下来呢; 1.下载一个mav ...