Door Man
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2639   Accepted: 1071

Description

You are a butler in a large mansion. This mansion has so many rooms that they are merely referred to by number (room 0, 1, 2, 3, etc...). Your master is a particularly absent-minded lout and continually leaves doors open throughout a particular floor of the house. Over the years, you have mastered the art of traveling in a single path through the sloppy rooms and closing the doors behind you. Your biggest problem is determining whether it is possible to find a path through the sloppy rooms where you:

  1. Always shut open doors behind you immediately after passing through
  2. Never open a closed door
  3. End up in your chambers (room 0) with all doors closed

In this problem, you are given a list of rooms and open doors
between them (along with a starting room). It is not needed to determine
a route, only if one is possible.

Input

Input to
this problem will consist of a (non-empty) series of up to 100 data
sets. Each data set will be formatted according to the following
description, and there will be no blank lines separating data sets.

A single data set has 3 components:

  1. Start line - A single line, "START M N", where M indicates the
    butler's starting room, and N indicates the number of rooms in the house
    (1 <= N <= 20).
  2. Room list - A series of N lines. Each line lists, for a
    single room, every open door that leads to a room of higher number. For
    example, if room 3 had open doors to rooms 1, 5, and 7, the line for
    room 3 would read "5 7". The first line in the list represents room 0.
    The second line represents room 1, and so on until the last line, which
    represents room (N - 1). It is possible for lines to be empty (in
    particular, the last line will always be empty since it is the highest
    numbered room). On each line, the adjacent rooms are always listed in
    ascending order. It is possible for rooms to be connected by multiple
    doors!
  3. End line - A single line, "END"

Following the final data set will be a single line, "ENDOFINPUT".

Note that there will be no more than 100 doors in any single data set.

Output

For
each data set, there will be exactly one line of output. If it is
possible for the butler (by following the rules in the introduction) to
walk into his chambers and close the final open door behind him, print a
line "YES X", where X is the number of doors he closed. Otherwise,
print "NO".

Sample Input

START 1 2
1 END
START 0 5
1 2 2 3 3 4 4 END
START 0 10
1 9
2
3
4
5
6
7
8
9 END
ENDOFINPUT

Sample Output

YES 1
NO
YES 10
【分析】这一题就是个欧拉回路的判定,很简单,但是输入有点麻烦。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<functional>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int N=;
const int M=;
ll power(ll a,int b,ll c){ll ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
char str[N];
int n,m,cnt[];
int main()
{
while(gets(str)!=NULL){
if(!strcmp(str,"ENDOFINPUT"))break;
sscanf(str,"%*s%d%d",&m,&n);
memset(cnt,,sizeof(cnt));
int ans=;
for(int i=;i<n;i++){
gets(str);
int k=,j;
while(sscanf(str+k,"%d",&j)==){
ans++;
cnt[i]++;
cnt[j]++;
while(str[k]&&str[k]==' ')k++;
while(str[k]&&str[k]!=' ')k++;
}
}
gets(str);
int odd=,even=;
for(int i=;i<n;i++){
if(cnt[i]&)odd++;
else even++;
}
if(!odd&&!m)printf("YES %d\n",ans);
else if(odd==&&(cnt[m]&)&&(cnt[]&)&&m)printf("YES %d\n",ans);
else printf("NO\n");
} return ;
}

POJ1300Door Man(欧拉回路)的更多相关文章

  1. ACM/ICPC 之 欧拉回路两道(POJ1300-POJ1386)

    两道有关欧拉回路的例题 POJ1300-Door Man //判定是否存在从某点到0点的欧拉回路 //Time:0Ms Memory:116K #include<iostream> #in ...

  2. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  3. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

  4. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  5. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  6. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  7. codeforces 723E (欧拉回路)

    Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...

  8. UVa 12118 检查员的难题(dfs+欧拉回路)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 10054 (欧拉回路) The Necklace

    题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...

随机推荐

  1. python实现关联规则

    代码中Ci表示候选频繁i项集,Li表示符合条件的频繁i项集 # coding=utf-8 def createC1(dataSet): # 构建所有1项候选项集的集合 C1 = [] for tran ...

  2. WIN7服务优化,别关太多,小心启动不

    原文链接地址:http://blog.csdn.net/civilman/article/details/51423972 Adaptive brightness 监视周围的光线状况来调节屏幕明暗,如 ...

  3. 洛谷 P2893 [USACO08FEB]修路Making the Grade 解题报告

    P2893 [USACO08FEB]修路Making the Grade 题目描述 A straight dirt road connects two fields on FJ's farm, but ...

  4. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  5. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  6. POJ1733:Parity Game(离散化+带权并查集)

    Parity Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12853   Accepted: 4957 题目链接 ...

  7. istringstream()函数的用法

    istringstream()函数的用法 头文件:#include 功能:将一个含有多个空格的字符串分割开来 eg:

  8. Java之戳中痛点 - (3)三目运算符的两个操作数类型尽量一致

    先看一个例子: package com.test; public class TernaryOperator { public static void main(String[] args) { in ...

  9. HTML5学习之新增标签

    转自:http://www.cnblogs.com/fly_dragon/archive/2012/05/25/2516142.html 作者:FlyDragon 一.引言 在本节中,笔者将向大家讲述 ...

  10. es6+最佳入门实践(11)

    11.async函数 async 函数是什么?一句话,它就是 Generator 函数的语法糖.通俗的说就是Generator函数的另一种写法,这种写法更简洁,除此之外,async函数还对Genrat ...