题意

给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改。一个点被更改当它的颜色与之前相反。

题解

第一道Gauss消元题。所谓gauss消元,就是使用初等行列式变换把原矩阵转化为上三角矩阵然后回套求解。

给定一个矩阵以后,我们考察每一个变量,找到它的系数最大的一行,然后根据这一行去消除其他的行。具体地代码如下面所示。

double a[N][N]
void Gauss(){
for(int i=1;i<=n;i++){
int r=i;
for(int j=i+1;j<=n;j++)
if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int j=1;j<=n+1;j++) swap(a[i][j],a[r][j]); for(int j=i+1;j<=n;j++){
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*t;
}
}
for(int i=n;i>=1;i--){
for(int j=n;j>i;j--) a[i][n+1]-=a[j][n+1]*a[i][j];
a[i][n+1]/=a[i][i];
}
}

对于xor运算,我们可以使用同样的方法消元。

另外,xor的话可以使用bitset压位以加速求解。

代码(附有详细注释)

#include <algorithm>
#include <cstdio>
const int maxn = 45;
int a[maxn][maxn], b[maxn];
int n, m, tot, mn = 0x3f3f3f;
void gauss() {
for (int i = 1; i <= n; i++) { //依次考察每一个未知数
int j = i; //开始选中第i行
while (j <= n && !a[j][i]) //选中系数最大的一行(减小精度误差)
j++;
if (j > n)
continue;
if (i != j)
for (int k = 1; k <= n + 1; k++) //交换两行,使得第i行成为最大系数
std::swap(a[j][k], a[i][k]);
for (int j = 1; j <= n;
j++) // gauss消元核心代码:使用第i行消除所有行的第i个未知数
if (i != j && a[j][i]) //以此来形成一个上三角矩阵,为之后的消元作准备
for (int k = 1; k <= n + 1; k++)
a[j][k] ^=
a[i][k]; //如果是普通的线性方程组,这里需要使用别的方法把系数置零
}
}
void dfs(int now) { //由于gauss消元后有一些自由元,我们需要进行最优解暴力搜索
if (tot >= mn)
return;
if (!now) {
mn = std::min(mn, tot);
return;
}
if (a[now][now]) { //确定的情况
int t = a[now][n + 1];
for (int i = now + 1; i <= n; i++)
if (a[now][i])
t ^= b[i]; //由于是上三角矩阵,所以逆向消元
b[now] = t;
if (t)
tot++;
dfs(now - 1);
if (t)
tot--; //回溯
} else { //自由元的情况,随意确定
b[now] = 0;
dfs(now - 1);
b[now] = 1;
tot++;
dfs(now - 1);
tot--;
}
}
int main() {
#ifdef D
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
a[i][i] = 1, a[i][n + 1] = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d %d", &x, &y);
a[x][y] = a[y][x] = 1;
}
gauss(); //判定是否无解:系数矩阵全0,常数矩阵不全为0
dfs(n);
printf("%d\n", mn);
return 0;
}

附:如何使用bitset

首先,声明bitset:

#include <bitset>
using std::bitset;

初始化:

bitset<n> b;
bitset<n> b(unsigned long u);

上述语句声明了一个n位全部为0的bitset,第二个语句用一个unsigned long long变量去初始化bitset。

bitset的更多操作:

b1 = b2 & b3;//按位与
b1 = b2 | b3;//按位或
b1 = b2 ^ b3;//按位异或
b1 = ~b2;//按位补
b1 = b2 << 3;//移位

[bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法的更多相关文章

  1. bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)

    1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1153  Solved: 564[Submi ...

  2. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  3. BZOJ1770 : [Usaco2009 Nov]lights 燈

    设$f[i]$表示$i$点按下开关后会影响到的点的集合,用二进制表示. 不妨设$n$为偶数,令$m=\frac{n}{2}$,对于前一半暴力$2^m$搜索所有方案,用map维护每种集合的最小代价. 对 ...

  4. 【dfs】【高斯消元】【异或方程组】bzoj1770 [Usaco2009 Nov]lights 燈 / bzoj2466 [中山市选2009]树

    经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着 ...

  5. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  6. 【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  7. BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]

    题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...

  8. 【BZOJ 1770 】 [Usaco2009 Nov]lights 燈 dfs+异或方程组

    这道题明显是异或方程组,然而解不一定唯一他要的是众多解中解为1的数的最小值,这个时候我们就需要dfs了我们dfs的时候就是枚举其有不确定解的数上选0或1从而推知其他解,由于我们dfs的时候先0后1,虽 ...

  9. 【BZOJ】1770 [Usaco2009 Nov]lights 燈

    [算法]高斯消元-异或方程组 [题解]良心简中题意 首先开关顺序没有意义. 然后就是每个点选或不选使得最后得到全部灯开启. 也就是我们需要一种确定的方案,这种方案使每盏灯都是开启的. 异或中1可以完美 ...

随机推荐

  1. 用gradle编译任意结构的Android项目

    ## 需求 * 继续用`Eclipse`项目的结构,但是使用`gradle`编译,或者说任意的项目结构进行编译. ## 解决方案 1. Android studio的项目结构 1. Android S ...

  2. 修改npm全局安装模式的路径

    由于npm全局模块的存放路径及cache的路径默认是放在C盘下,这样肯定会增加C盘的负担,那么如果需要修改其存放路径应该怎么做呢? 第一步:在nodejs安装目录(也可以指定其它目录)下创建”node ...

  3. 接口测试工具postman(一)下载安装说明

    Postman是Google开发的一款功能强大的网页调试与发送网页HTTP请求,并能运行测试用例的的Chrome插件. 主要功能包括: 1.模拟各种HTTP requests 从常用的 GET.POS ...

  4. 【app.json】配置说明,不断更新中

    app.json文件用来对微信小程序进行全局配置,决定页面文件的路径.窗口表现.设置网络超时时间.设置多 tab 等. 注意: 1) json配置中键名.键值必须使用双引号,不能使用单引号. 2) 以 ...

  5. Mac下安装pear库+phpDocumentor

    1. 首先安装pear: curl -o go-pear.php https://pear.php.net/go-pear.phar 看见这个就安装OK: % Total % Received % X ...

  6. Django源码分析之权限系统_擒贼先擒王

    乍见 Django内置的权限系统已经很完善了,加上django-guardian提供的功能,基本上能满足大部分的权限需求.暂且不说django-guardian,我们先来看下Django内置的权限系统 ...

  7. CCS Font 知识整理总结

    总是搞不懂 CCS 中如何正确的使用字体,这下明白了. 1.什么是 font-face font-face 顾名思义,就是文字的脸.字体是文字的外在形式,就是文字的风格,是文字的外衣.比如行书.楷书. ...

  8. 第5讲——cin处理字符输入

    本来这一讲应该是while.for.if之类的,但是,我们可是学过C的男人,再浪费时间搞这个??? 还不如学点C++中的新知识. cin对象支持3种不同模式的单字符输入,其用户接口各不相同. 下面我们 ...

  9. 并查集——poj1988(带权并查集中等)

    一.题目回顾 题目链接:Cube Stacking 题意:有n个箱子,初始时每个箱子单独为一列:接下来有p行输入,M, x, y 或者 C, x: 对于M,x,y:表示将x箱子所在的一列箱子搬到y所在 ...

  10. 第十五次ScrumMeeting会议

    第十五次Scrum Meeting 时间:2017/12/5 地点:主201 人员:全体成员 目前工作情况 名字 完成的工作 计划工作 蔡帜 -- -- 游心 完成Scrum会议记录,更新wiki游戏 ...