【洛谷 P3846】 [TJOI2007]可爱的质数 (BSGS)
#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
int a, b, p;
int fast_pow(int n, int k){ //n^k%p
int ans = 1;
while(k){
if(k & 1) ans = (ll)ans * n % p;
n = (ll)n * n % p;
k >>= 1;
}
return ans;
}
int BSGS(){ //a^x≡b(mod p)
map <int, int> hash; hash.clear();
int t = ceil(sqrt(p)), val = b, j = 1;
for(int i = 0; i < t; ++i){
hash[val] = i;
val = (ll)val * a % p;
}
a = fast_pow(a, t);
if(!a) return !b ? 1 : -1;
for(int i = 0; i <= t; ++i){
int k = hash.find(j) == hash.end() ? -1 : hash[j];
if(k >= 0 && (i * t - k) >= 0) return i * t - k;
j = (ll)j * a % p;
}
return -1;
}
int main(){
scanf("%d%d%d", &p, &a, &b);
int ans = BSGS();
if(ans == -1) printf("no solution\n");
else printf("%d\n", ans);
return 0;
}
【洛谷 P3846】 [TJOI2007]可爱的质数 (BSGS)的更多相关文章
- Luogu P3846 [TJOI2007] 可爱的质数/【模板】BSGS
题意 给定 \(y,z,p\),求最小的正整数 \(x\) 满足 \(y^x\equiv z\bmod p\),保证 \(p\) 是质数. \(\texttt{Data Range:}2\leq y, ...
- [Luogu] P3846 [TJOI2007]可爱的质数
题目描述 给定一个质数P(2<=P<2312^{31}231),以及一个整数B(2<=B<P),一个整数N(2<=N<P). 现在要求你计算一个最小的L,满足BL≡ ...
- bzoj2242,洛谷2485----SDOI2011计算器(exgcd,qsm,bsgs模板)
就是一道模板题! 这里再强调一下 BSGS 考虑方程\(a^x = b \pmod p\) 已知a,b,p\((2 \le p\le 10^9)\),其中p为质数,求x的最小正整数解 解法: 注意到如 ...
- 【[TJOI2007]可爱的质数】
题目 用一道板子题来复习一下\(bsgs\) \(bsgs\)用于求解形如 \[a^x\equiv b(mod\ p)\] 这样的高次不定方程 由于费马小定理的存在,我们可是直接暴力扫一遍\(p\), ...
- 【洛谷 P2485】 [SDOI2011]计算器 (BSGS)
题目链接 第一问:快速幂 第二问:扩欧解线性同余方程 第三问:\(BSGS\) 三个模板 #include <cstdio> #include <cmath> #include ...
- 洛谷P3847 [TJOI2007]调整队形
P3847 [TJOI2007]调整队形 题目背景 学校艺术节上,规定合唱队要参加比赛,各个队员的衣服颜色不能很混乱:合唱队员应排成一横排,且衣服颜色必须是左右对称的. 例如:“红蓝绿蓝红”或“红蓝绿 ...
- 洛谷P3306 [SDOI2013]随机数生成器(BSGS)
传送门 感觉我BSGS都白学了……数学渣渣好像没有一道数学题能自己想出来…… 要求$X_{i+1}=aX_i+b\ (mod \ \ p)$ 左右同时加上$\frac{b}{a-1}$,把它变成等比数 ...
- 洛谷P2485 [SDOI2011]计算器(exgcd+BSGS)
传送门 一题更比三题强 1操作直接裸的快速幂 2操作用exgcd求出最小正整数解 3操作用BSGS硬上 然后没有然后了 //minamoto #include<cstdio> #inclu ...
- 【洛谷p1217】回文质数
回文质数[题目链接] 始终要记得凌云壮flag(真香) 说是个搜索,其实感觉更像是一个暴力: 这个题的难度并不是特别大,因为下面的提示太明显了qwq,(而且之前培训也讲过)首先是构造回文数,构造回文数 ...
随机推荐
- html简单的分享功能
超级简单的分享. 包括:QQ.QQ空间.新浪微博.腾讯微博,微信(只是一个二维码): 1.首先是html代码: (前端我并不太会,一直用的都是bootstrap) <div class=&quo ...
- 【jQuery】 实用 js
[jQuery] 实用 js 1. int 处理 parseInt(") // int 转换 isNaN(page) // 判断是否是int类型 2. string 处理 // C# str ...
- ardupilot_gazebo仿真(三)
ardupilot_gazebo仿真(三) 标签(空格分隔): 未分类 创建ROS node 实现对无人机的控制(软件在环) MAVROS MAVROS是ROS中的一个能够连接支持MAVLink地面站 ...
- LeetCode - 66. Plus One(0ms)
Given a non-empty array of digits representing a non-negative integer, plus one to the integer. The ...
- Leetcode 672.灯泡开关II
灯泡开关II 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 . ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- System.NullReferenceException:未将对象引用设置到对象的实例,这是一个新鸟,中鸟,老鸟都避不开的错误
原文链接:http://www.jb51.net/article/30005.htm
- Java基础知识-去重
java基础知识-去掉list集合中的重复元素: 思路: 首先新建一个容器resultList用来存放去重之后的元素 然后遍历sourceList集合中的元素 判断所遍历的元素是否已经存在于resul ...
- require.js 模块化
什么是模块化? 将若干功能进行封装,以备将来被重复使用. 为什么要前端模块化? 将公共功能进行封装实现复用 灵活解决依赖 解决全局变量污染 如何实现前端模块化? <!DOCTYPE html&g ...
- 奇异值分解(SVD)小结
SVD(奇异值分解)真的是一个神奇的东西,这里就写个小结. 其实原理并不是那么难理解. 它在数据去噪方面和降维上有特殊作用,也与PCA有很大的联系. 首先我们先回顾一下 EVD,特征值分解,可以对SV ...