这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要。

  这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也不是不可能。

  这一技巧的主要思想是使要加和的数据完全储存,并且在下一次计算中直接调用,所以你的对于DP当前项的查询无论是N还是logN,这一方法都能直接解决。

  以一道题来作为我们的例子;
  openjudge9277    (cf 295D跟这题差不多,只是对比于这道题要加个高度,但不用优化)

  分享出题目

9277:Logs Stacking堆木头

总时间限制: 1000ms

内存限制: 131072kB
描述

Daxinganling produces a lot of timber. Before loading onto trains, the timberjacks will place the logs to some place in the open air first. Looking from the sideway, the figure of a logs stack is as follows: 
We have known that the number of logs in each layer is fewer than the lower layer for at least one log, and that in each layer the logs are connected in a line. In the figure above, there are 12 logs in the bottom layer of the stack. Now, given the number of logs in the bottom layer, the timberjacks want to know how many possible figures there may be. 
给出在最底层的木头的个数,问有多少种堆放木头的方式,当然你的堆放方式不能让木头掉下来. 
在堆放的时候木头必须互相挨着在一起. 

输入

The first line of input contains the number of test cases T (1 <= T <= 1000000). Then T lines follow. Every line only contains a number n (1 <= n <= 200000) representing the number of logs in the bottom layer.

输出

For each test case in the input, you should output the corresponding number of possible figures. Because the number may be very large, just output the number mod 10^5.

样例输入
4
1
2
3
5
样例输出
1
2
5
34
提示

当输入3时,有5种方式

第一种:上面一个也不放

第二种:上面放一根,放在最左边

第三种:上面放一根,放在最右边

第四种:上面放二根

第五种:上面先放二根,然后在二根的上面放一根

那么对于这样一道比较裸的递推题,只要理解题意,推推样例画画图即可得动态转移方程:

但是,这道题的数据范围是20w,直接n2递推肯定过不了,所以我们通过计算前缀和可以得到一个更优的方法。

我们先来判断一下每一组答案是怎么来的

f[i]=f[i-1]*1+f[i-2]*2+f[i-3]*3+.....+f[1]*(i-1)

f[i+1]=f[i]*1+f[i-1]*2+f[i-2]*3+.......+f[1]*i

我们发现,f[i+1]只是在f[i]的基础上加了一组f[1]到f[i]的和,通过动态维护这一个和的结果,我们可以O(1)得出当前解。

所以现在只用考虑动态维护就好

来看张图

我们用f数组来计算当前解,用s数组来计算前缀和,这样就可以轻易的得出解啦

所以,在一般考试遇到这种题的时候,正常人花一定的时间都能算出简单的递推式,那么出题人也不傻,数据量会给的比较大,所以,这种前缀和优化就变得至关重要。决定了你究竟是那AC还是只拿暴力分。

下面给出代码

 #include<stdio.h>
int f[],s,T,n;
int main()
{
int i,j;
f[]=,f[]=,s=;
for(i=;i<=;++i)
{
s+=f[i-];
s%=;
f[i]+=f[i-]+s;
f[i]%=;
}
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%d\n",f[n]);
}
return ;
}

算法技巧讲解》关于对于递推形DP的前缀和优化的更多相关文章

  1. [Codeforces676B]Pyramid of Glasses(递推,DP)

    题目链接:http://codeforces.com/problemset/problem/676/B 递推,dp(i, j)表示第i层第j个杯子,从第一层开始向下倒,和数塔一样的题.每个杯子1个时间 ...

  2. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

  3. 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】

    Pokémon GO Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. 刷题向》关于一道比较优秀的递推型DP(openjudge9275)(EASY+)

    先甩出传送门:http://noi.openjudge.cn/ch0206/9275/ 这道题比较经典, 最好不要看题解!!!!! 当然,如果你执意要看我也没有办法 首先,显然的我们可以用 f [ i ...

  5. 洛谷4316 绿豆蛙的归宿(DAG递推/概率dp)

    题目大意: 给定一个DAG,求起点到终点的路径长度期望 根据题意可以知道每一条边都有一定概率被走到 那么\(\displaystyle\begin{aligned} Ans = \sum_{e \in ...

  6. Uva 10446【递推,dp】

    UVa 10446 求(n,bcak)递归次数.自己推出来了一个式子: 其实就是这个式子,但是不知道该怎么写,怕递归写法超时.其实直接递推就好,边界条件易得C(0,back)=1.C(1,back)= ...

  7. 959F - Mahmoud and Ehab and yet another xor task xor+dp(递推形)+离线

    959F - Mahmoud and Ehab and yet another xor task xor+dp+离线 题意 给出 n个值和q个询问,询问l,x,表示前l个数字子序列的异或和为x的子序列 ...

  8. hdu 4472 Count(递推即dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4472 代码: #include <cstdio> #include <cstring ...

  9. 洛谷 1192:台阶问题(递推,DP)

    题目描述 有 N 级的台阶,你一开始在底部,每次可以向上迈最多 K 级台阶(最少 1 级),问到达第 N 级台阶有多少种不同方式. 输入输出格式 输入格式: 两个正整数N,K. 输出格式: 一个正整数 ...

随机推荐

  1. React Native探索(四)Flexbox布局详解

    相关文章 React Native探索系列 前言 在Android开发中我们有很多种布局,比如LinearLayout和RelativeLayout,同样在React Native也有它的布局,这个布 ...

  2. Chrome设置允许ajax跨域

    最近在做一个前后端分离的项目,在Windows上用.Net WebApi时候的后端,在Mac上用ng2搭建的前端. 要实现前后端对接进行调试,就必须要解决ajax跨域的问题,实现方法如下: //在te ...

  3. makefile 学习归纳

    makefile 学习归纳 一直希望 好好整理下 makefile的写法,这在linux编程界是必备技能.下面就好好的说道说道. 可以参考的大神总结 整理 makefile是供make命令执行的 脚本 ...

  4. 创建假的wifi热点

    本帖介绍怎么创建假的wifi热点,然后抓取连接到这个wifi用户的敏感数据.我们还会给周围的无线路由器发送未认证的包,使这些路由器瘫痪,强迫用户连接(或自动连接)我们创建的假wifi热点. 这种攻击也 ...

  5. 在Ajax.ActionLink的OnBegin,onComplete等事件中使用this【解决办法】

    方法就是修改这个文件[jquery.unobtrusive-ajax.js] options.data.push({ name: "X-Requested-With", value ...

  6. bzoj 4753 最佳团体

    Written with StackEdit. Description \(JSOI\)信息学代表队一共有N名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,\(JYY\)的编号是\(0\) ...

  7. IDEA生成serialVersionUID的警告

    默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...

  8. Ambari的API调用

    GET api/v1/clusters/HDP/configurations可以获得所有的配置信息(例如,http://hdp0:8080/api/v1/clusters/HDP/configurat ...

  9. bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...

  10. 1130 Infix Expression

    题意:给出一个语法树(二叉树),输出相应的中缀表达式. 思路:很显然,通过中序遍历来做.通过观察,发现除了根结点之外的所有非叶结点的两侧都要输出括号,故在中序遍历时判断一下即可. 代码: #inclu ...